1
|
Zhao Z, Dong W, Liu J, Yang S, Cotman AE, Zhang Q, Fang X. Catalytic Asymmetric Transfer Hydrogenation of β,γ-Unsaturated α-Diketones. J Am Chem Soc 2024; 146:33543-33560. [PMID: 39604061 DOI: 10.1021/jacs.4c11070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Asymmetric transfer hydrogenation (ATH) has been recognized as a highly valuable strategy that allows access to enantioenriched substances and has been widely applied in the industrial production of drug molecules. However, despite the great success in ATH of ketones, highly efficient, regio- and stereoselective ATH on enones remains underdeveloped. Moreover, optically pure acyloins and 1,2-diols are both extremely useful building blocks in organic synthesis, medicinal chemistry, and materials science, but concise asymmetric approaches allowing access to different types of acyloins and 1,2-diols have scarcely been discovered. We report in this paper the first highly efficient ATH of readily accessible β,γ-unsaturated α-diketones. The protocol affords four types of enantioenriched acyloins and four types of optically pure 1,2-diols in highly regio- and stereoselective fashion. The synthetic value of this work has been showcased by the divergent synthesis of four related natural products. Moreover, systematic mechanistic studies and density functional theory (DFT) calculations have illustrated the origin of the reactivity divergence, revealed the different roles of aromatic and aliphatic substituents in the substrates, and provided a range of unique mechanistic rationales that have not been disclosed in ATH-related studies.
Collapse
Affiliation(s)
- Zhifei Zhao
- State Key Laboratory of Structural Chemistry, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, University of Chinese Academy of Sciences, Fuzhou 350100, China
| | - Wennan Dong
- State Key Laboratory of Structural Chemistry, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, University of Chinese Academy of Sciences, Fuzhou 350100, China
| | - Jinggong Liu
- Orthopedics Department, Guangdong Provincial Hospital of Traditional Chinese Medicine, Guangzhou 510120, China
| | - Shuang Yang
- State Key Laboratory of Structural Chemistry, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, University of Chinese Academy of Sciences, Fuzhou 350100, China
| | - Andrej Emanuel Cotman
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva Cesta 7, SI-1000 Ljubljana, Slovenia
| | - Qi Zhang
- School of Chemistry and Chemical Engineering, Institute of Industry & Equipment Technology, Hefei University of Technology, Hefei 230009, China
| | - Xinqiang Fang
- State Key Laboratory of Structural Chemistry, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, University of Chinese Academy of Sciences, Fuzhou 350100, China
| |
Collapse
|
2
|
Masiuk US, Faletrov YV, Kananovich DG, Mineyeva IV. Stereodivergent Assembly of 2,6- cis- and - trans-Tetrahydropyrans via Base-Mediated Oxa-Michael Cyclization: The Key Role of the TMEDA Additive. J Org Chem 2023; 88:355-370. [PMID: 36495268 DOI: 10.1021/acs.joc.2c02382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The stereodivergent synthesis of cis- and trans-2,6-disubstituted tetrahydropyrans (THPs) via sodium hexamethyldisilazide-promoted oxa-Michael cyclization of (E)-ζ-hydroxy α,β-unsaturated esters is presented. The cyclization affords the kinetically favored trans-THPs with high stereoselectivity (dr up to 93:7) at a low temperature (-78 °C), while the room-temperature reaction does not produce the thermodynamically preferred cis-THPs as major products and occurs with poor stereocontrol. The addition of tetramethylethylenediamine (TMEDA) significantly improves the stereochemical outcome of the room-temperature cyclization and allows attaining high cis-selectivity (dr up to 99:1). The remarkable effect of TMEDA indicates that the sodium cation plays an important role in controlling the stereoselectivity of the thermodynamically driven process, that is, complexation of the cation with the cyclization products results in diminished selectivity. DFT calculations support this conclusion, indicating a greater difference in Gibbs energies of sodium-free cis- and trans-enolates compared to the respective sodium chelate complexes. The synthetic utility of the method has been demonstrated by the formal syntheses of (+)-Neopeltolide and (-)-Diospongin B and the total synthesis of (-)-Diospongin A.
Collapse
Affiliation(s)
- Uladzimir S Masiuk
- Department of Chemistry, Belarusian State University, Leningradskaya 14, 220006 Minsk, Belarus.,School of Science, Department of Chemistry and Biotechnology, Tallinn University of Technology, Akadeemia tee 15, 12618 Tallinn, Estonia
| | - Yaroslav V Faletrov
- Department of Chemistry, Belarusian State University, Leningradskaya 14, 220006 Minsk, Belarus.,Research Institute for Physical Chemical Problems, Belarusian State University, Leningradskaya 14, 220006 Minsk, Belarus
| | - Dzmitry G Kananovich
- School of Science, Department of Chemistry and Biotechnology, Tallinn University of Technology, Akadeemia tee 15, 12618 Tallinn, Estonia
| | - Iryna V Mineyeva
- Department of Chemistry, Belarusian State University, Leningradskaya 14, 220006 Minsk, Belarus
| |
Collapse
|
3
|
Thodupunuri P, Hanumaiah M, Bommagani S, Sharma GVM. Stereoselective synthesis of the C-11 to C-19 segment of macrolactin 3 via a center inversion followed by Oxa-Michael addition approach. J Carbohydr Chem 2017. [DOI: 10.1080/07328303.2017.1354012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Prashanth Thodupunuri
- Organic and Bimolecular Chemistry Division, CSIR-Indian Institute of Chemical Technology, Hyderabad, India
| | - Marumamula Hanumaiah
- Organic and Bimolecular Chemistry Division, CSIR-Indian Institute of Chemical Technology, Hyderabad, India
| | - Shobanbabu Bommagani
- Organic and Bimolecular Chemistry Division, CSIR-Indian Institute of Chemical Technology, Hyderabad, India
| | - Gangavaram V. M. Sharma
- Organic and Bimolecular Chemistry Division, CSIR-Indian Institute of Chemical Technology, Hyderabad, India
| |
Collapse
|
4
|
Affiliation(s)
- Yusuke Ogura
- Laboratory of Applied Bioorganic
Chemistry, Graduate School of Agricultural Science, Tohoku University, Tsutsumidori-Amamiyamachi, Aoba-ku, Sendai 981-8555, Japan
| | - Hikaru Sato
- Laboratory of Applied Bioorganic
Chemistry, Graduate School of Agricultural Science, Tohoku University, Tsutsumidori-Amamiyamachi, Aoba-ku, Sendai 981-8555, Japan
| | - Shigefumi Kuwahara
- Laboratory of Applied Bioorganic
Chemistry, Graduate School of Agricultural Science, Tohoku University, Tsutsumidori-Amamiyamachi, Aoba-ku, Sendai 981-8555, Japan
| |
Collapse
|
5
|
Balti M, Efrit ML, Leadbeater NE. Preparation of vinyl ethers using a Wittig approach, and their subsequent hydrogenation employing continuous-flow processing. Tetrahedron Lett 2016. [DOI: 10.1016/j.tetlet.2016.03.037] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
6
|
|
7
|
Lapinsky DJ. Three-Membered Ring Systems. ACTA ACUST UNITED AC 2015. [DOI: 10.1016/b978-0-08-100024-3.00003-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
|
8
|
|
9
|
|