1
|
Petushkov VN, Vavilov MV, Khokhlova AN, Zagitova RI, Belozerova OA, Shcheglov AS, Kovalchuk SI, Tsarkova AS, Rodionova NS, Yampolsky IV, Dubinnyi MA. Henlea earthworm bioluminescence comprises violet-blue BRET from tryptophan 2-carboxylate to deazaflavin cofactor. Biochem Biophys Res Commun 2024; 708:149787. [PMID: 38537527 DOI: 10.1016/j.bbrc.2024.149787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 03/12/2024] [Indexed: 04/06/2024]
Abstract
We recently identified the deazaflavin cofactor as a light emitter in novel bioluminescence (BL) system from Siberian earthworms Henlea sp. (Petushkov et al., 2023, Org. Biomol. Chem. 21:415-427). In the present communication we compared in vitro BL spectra in the absence and in the presence of the cofactor and found a wavelength shift from 420 to 476 nm. This violet-blue BRET to deazaflavin cofactor (acceptor of photonless transfer) masks the actual oxyluciferin as an emitter (BRET donor) in the novel BL system. The best candidate for that masked chromophore is tryptophan 2-carboxylate (T2C) found previously as a building block in some natural products isolated from Henlea sp. (Dubinnyi et al., 2020, ChemSelect 5:13155-13159). We synthesized T2C and acetyl-T2C, verified their presence in earthworms by nanoflow-HRMS, explored spectral properties of excitation and emission spectra and found a chain of excitation/emission maxima with a perfect potential for BRET: 300 nm (excitation of T2C) - 420 nm (emission of T2C) - 420 nm (excitation of deazaflavin) - 476 nm (emission of deazaflavin, BL). An array of natural products with T2C chromophore are present in BL earthworms as candidates for novel oxyluciferin. We demonstrated for the Henlea BL that the energy of the excited state of the T2C chromophore is transferred by the Förster mechanism and then emitted by deazaflavin (BRET), similarly to known examples: aequorin-GFP in Aequorea victoria and antenna proteins in bacterial BL systems (lumazine from Photobacterium and yellow fluorescent protein from Vibrio fischeri strain Y1).
Collapse
Affiliation(s)
- Valentin N Petushkov
- Institute of Biophysics, Krasnoyarsk Research Center, Siberian Branch, Russian Academy of Sciences, 50/50 Akademgorodok, 660036, Krasnoyarsk, Russia.
| | - Matvey V Vavilov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 16/10 Miklukho-Maklaya str., Moscow, 117997, Russia; Faculty of Biology and Biotechnology, National Research University Higher School of Economics, 33k4 Profsoyuznaya str., Moscow, 117418, Russia
| | - Anastasia N Khokhlova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 16/10 Miklukho-Maklaya str., Moscow, 117997, Russia; Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory 1 bld. 3, Moscow, 119991у, Russia
| | - Renata I Zagitova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 16/10 Miklukho-Maklaya str., Moscow, 117997, Russia
| | - Olga A Belozerova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 16/10 Miklukho-Maklaya str., Moscow, 117997, Russia
| | - Aleksandr S Shcheglov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 16/10 Miklukho-Maklaya str., Moscow, 117997, Russia; Pirogov Russian National Research Medical University, 1 Ostrovityanova str, Moscow, 117997, Russia
| | - Sergey I Kovalchuk
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 16/10 Miklukho-Maklaya str., Moscow, 117997, Russia
| | - Aleksandra S Tsarkova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 16/10 Miklukho-Maklaya str., Moscow, 117997, Russia
| | - Natalia S Rodionova
- Institute of Biophysics, Krasnoyarsk Research Center, Siberian Branch, Russian Academy of Sciences, 50/50 Akademgorodok, 660036, Krasnoyarsk, Russia
| | - Ilia V Yampolsky
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 16/10 Miklukho-Maklaya str., Moscow, 117997, Russia; Pirogov Russian National Research Medical University, 1 Ostrovityanova str, Moscow, 117997, Russia
| | - Maxim A Dubinnyi
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 16/10 Miklukho-Maklaya str., Moscow, 117997, Russia; Moscow Institute of Physics and Technology (State University), 9 Institutskiy per., Dolgoprudny, Moscow Region, 141700, Russia.
| |
Collapse
|
2
|
Afanasenko AM, Wu X, De Santi A, Elgaher WAM, Kany AM, Shafiei R, Schulze MS, Schulz TF, Haupenthal J, Hirsch AKH, Barta K. Clean Synthetic Strategies to Biologically Active Molecules from Lignin: A Green Path to Drug Discovery. Angew Chem Int Ed Engl 2024; 63:e202308131. [PMID: 37840425 DOI: 10.1002/anie.202308131] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 09/06/2023] [Accepted: 10/06/2023] [Indexed: 10/17/2023]
Abstract
Deriving active pharmaceutical agents from renewable resources is crucial to increasing the economic feasibility of modern biorefineries and promises to alleviate critical supply-chain dependencies in pharma manufacturing. Our multidisciplinary approach combines research in lignin-first biorefining, sustainable catalysis, and alternative solvents with bioactivity screening, an in vivo efficacy study, and a structural-similarity search. The resulting sustainable path to novel anti-infective, anti-inflammatory, and anticancer molecules enabled the rapid identification of frontrunners for key therapeutic indications, including an anti-infective against the priority pathogen Streptococcus pneumoniae with efficacy in vivo and promising plasma and metabolic stability. Our catalytic methods provided straightforward access, inspired by the innate structural features of lignin, to synthetically challenging biologically active molecules with the core structure of dopamine, namely, tetrahydroisoquinolines, quinazolinones, 3-arylindoles and the natural product tetrahydropapaveroline. Our diverse array of atom-economic transformations produces only harmless side products and uses benign reaction media, such as tunable deep eutectic solvents for modulating reactivity in challenging cyclization steps.
Collapse
Affiliation(s)
- Anastasiia M Afanasenko
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG, Groningen (the, Netherlands
| | - Xianyuan Wu
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG, Groningen (the, Netherlands
| | - Alessandra De Santi
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG, Groningen (the, Netherlands
| | - Walid A M Elgaher
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS)-Helmholtz Centre for Infection Research (HZI), Campus Building E8.1, 66123, Saarbrücken, Germany
| | - Andreas M Kany
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS)-Helmholtz Centre for Infection Research (HZI), Campus Building E8.1, 66123, Saarbrücken, Germany
| | - Roya Shafiei
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS)-Helmholtz Centre for Infection Research (HZI), Campus Building E8.1, 66123, Saarbrücken, Germany
- Saarland University, Department of Pharmacy, Campus Building E8.1, 66123, Saarbrücken, Germany
| | | | - Thomas F Schulz
- Institute of Virology, Hannover Medical School, 30625, Hannover, Germany
- Institute of Virology, Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, 30625, Hannover, Germany
| | - Jörg Haupenthal
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS)-Helmholtz Centre for Infection Research (HZI), Campus Building E8.1, 66123, Saarbrücken, Germany
| | - Anna K H Hirsch
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS)-Helmholtz Centre for Infection Research (HZI), Campus Building E8.1, 66123, Saarbrücken, Germany
- Saarland University, Department of Pharmacy, Campus Building E8.1, 66123, Saarbrücken, Germany
- Institute of Virology, Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, 30625, Hannover, Germany
| | - Katalin Barta
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG, Groningen (the, Netherlands
- Institute for Chemistry, University of Graz, Heinrichstrasse 28/II, 8010, Graz, Austria
| |
Collapse
|
3
|
Qi Y, Xu J, Zeng Z, Xue W, Zhu Z. Synthesis of Methyl Sorbate Catalyzed by Deep Eutectic Solvent Based on Choline Chloride: Kinetics and Optimization. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c02748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Yu Qi
- School of Chemical Engineering, East China University of Science and Technology, Shanghai200237, China
| | - Jumei Xu
- School of Chemical Engineering, East China University of Science and Technology, Shanghai200237, China
| | - Zuoxiang Zeng
- School of Chemical Engineering, East China University of Science and Technology, Shanghai200237, China
| | - Weilan Xue
- School of Chemical Engineering, East China University of Science and Technology, Shanghai200237, China
| | - Zhu Zhu
- School of Chemical Engineering, East China University of Science and Technology, Shanghai200237, China
| |
Collapse
|
4
|
Zhang M, Zhang X, Liu Y, Wu K, Zhu Y, Lu H, Liang B. Insights into the relationships between physicochemical properties, solvent performance, and applications of deep eutectic solvents. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:35537-35563. [PMID: 34031822 DOI: 10.1007/s11356-021-14485-2] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Accepted: 05/14/2021] [Indexed: 06/12/2023]
Abstract
Deep eutectic solvent (DES) is regarded as a new generation of green solvent due to its distinctive and tailorable physicochemical properties, such as low volatility, strong solubility, biodegradability, low-cost, environment-friendly, and feasibility of the structural design. As an alternative to traditional organic solvents and ionic liquids (ILs), DESs have been widely applied in many fields, such as organic chemical synthesis, electrochemical deposition, material preparation, biomass catalytic conversion, extraction and separation, detection and analysis, nanotechnology, gas absorption, and drug delivery. In this paper, through in-depth discussion on factors influencing the physicochemical properties of DESs, we summarized the relations between their composition, structure, and performance. Focusing on their solvent performance, we analyzed the latest research results of DESs with different physicochemical properties in various fields. It should be pointed out that designing and synthesizing DESs from the molecular structure aspect to regulate their physicochemical properties is the direction of accurately developing new functional applications of DESs.
Collapse
Affiliation(s)
- Man Zhang
- School of Chemical Engineering, Sichuan University, Chengdu, 610065, China
- Institute of New Energy and Low-Carbon Technology, Sichuan University, Chengdu, 610207, China
| | - Xingyilong Zhang
- Institute of New Energy and Low-Carbon Technology, Sichuan University, Chengdu, 610207, China
| | - Yingying Liu
- Institute of New Energy and Low-Carbon Technology, Sichuan University, Chengdu, 610207, China
| | - Kejing Wu
- Institute of New Energy and Low-Carbon Technology, Sichuan University, Chengdu, 610207, China
| | - Yingming Zhu
- Institute of New Energy and Low-Carbon Technology, Sichuan University, Chengdu, 610207, China
| | - Houfang Lu
- School of Chemical Engineering, Sichuan University, Chengdu, 610065, China.
- Institute of New Energy and Low-Carbon Technology, Sichuan University, Chengdu, 610207, China.
| | - Bin Liang
- School of Chemical Engineering, Sichuan University, Chengdu, 610065, China
- Institute of New Energy and Low-Carbon Technology, Sichuan University, Chengdu, 610207, China
| |
Collapse
|
5
|
Design and synthesis of β-carboline and combretastatin derivatives as anti-neutrophilic inflammatory agents. Bioorg Chem 2021; 111:104846. [PMID: 33813149 DOI: 10.1016/j.bioorg.2021.104846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 02/02/2021] [Accepted: 03/18/2021] [Indexed: 11/22/2022]
Abstract
A series of β-carboline derivatives was synthesized by the Pictet-Spengler reaction with or without the combretastatin skeleton. The structures of these derivatives were elucidated by spectroscopic techniques. All synthesized compounds were evaluated for their anti-inflammatory activity in human neutrophils. Among them, two compounds, NTU-228 and HK-72, showed significant inhibitory effects on N-formyl-Met-Leu-Phe (fMLF)-induced superoxide anion generation in human neutrophils with IC50 values of 5.58 ± 0.56 and 2.81 ± 0.07 μM, respectively. Neither NTU-228 nor HK-72 caused cytotoxicity in human neutrophils. NTU-228 inhibited the phosphorylation of p38 mitogen-activated protein kinase (MAPK) and intracellular Ca2+ levels ([Ca2+]i) in fMLF-activated human neutrophils. Additionally, HK-72 selectively inhibited the fMLF-induced phosphorylation of p38 and [Ca2+]i in human neutrophils. Molecular docking analysis showed a favorable binding affinity of HK-72 toward p38 MAPK. The proposed synthetic strategy opens up new opportunities for the synthesis of novel potential candidates against neutrophilic inflammation.
Collapse
|
6
|
Wang H, Du Y, Wang Z, Yu W, Zhang L, Wu C, Wang M, Zhang J. Preparation of eco-friendly composite food packaging films based on gelatin and a matrine coconut acids ionic liquid. NEW J CHEM 2021. [DOI: 10.1039/d1nj02859f] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Eco-friendly food packaging films were prepared by compositing gelatin with a bioactive ionic liquid showing excellent antioxidant and antibacterial properties.
Collapse
Affiliation(s)
- Hao Wang
- School of Material Sciences and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China
- Research Centre of Printed Flexible Electronics, School of Materials Science and Engineering, Harbin Institute of Technology, Shenzhen, 518055, China
| | - Yixiang Du
- School of Material Sciences and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China
- Research Centre of Printed Flexible Electronics, School of Materials Science and Engineering, Harbin Institute of Technology, Shenzhen, 518055, China
| | - Zhenyuan Wang
- Shenzhen Shinesky Biological Technology Co., Ltd., Taoyuan Street, Nanshan District, Shenzhen, 518055, China
| | - Wen Yu
- School of Material Sciences and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China
- Research Centre of Printed Flexible Electronics, School of Materials Science and Engineering, Harbin Institute of Technology, Shenzhen, 518055, China
| | - Ling Zhang
- School of Material Science, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China
| | - Chengyu Wu
- School of Material Sciences and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China
- Research Centre of Printed Flexible Electronics, School of Materials Science and Engineering, Harbin Institute of Technology, Shenzhen, 518055, China
| | - Mi Wang
- School of Material Sciences and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China
- Research Centre of Printed Flexible Electronics, School of Materials Science and Engineering, Harbin Institute of Technology, Shenzhen, 518055, China
| | - Jiaheng Zhang
- School of Material Sciences and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China
- Research Centre of Printed Flexible Electronics, School of Materials Science and Engineering, Harbin Institute of Technology, Shenzhen, 518055, China
| |
Collapse
|
7
|
The one-pot four-component eco-friendly synthesis of spirooxindoles in deep eutectic solvent. J CHEM SCI 2020. [DOI: 10.1007/s12039-019-1730-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
8
|
Green Synthesis of 1-Aryl-2,3,4,9-Tetrahydro-1H-B-Carbolines using Fe(Iii)-Montmorillonite and Study of their Antimicrobial Activity. Pharm Chem J 2020. [DOI: 10.1007/s11094-020-02205-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
9
|
Liu H, Han F, Li H, Liu J, Xu Q. Selective construction of alkaloid scaffolds by alcohol-based direct and mild aerobic oxidative Pictet–Spengler reactions. Org Biomol Chem 2020; 18:7079-7085. [DOI: 10.1039/d0ob01549k] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Tetrahydro-β-carboline and β-carboline alkaloid scaffolds can be selectively obtained by direct aerobic oxidative Pictet–Spengler reactions of tryptamines with alcohols using TBN/TEMPO as the catalysts and oxygen as the oxidant under mild conditions.
Collapse
Affiliation(s)
- Haicheng Liu
- College of Chemistry and Materials Engineering
- Wenzhou University
- Wenzhou
- China
| | - Feng Han
- College of Chemistry and Materials Engineering
- Wenzhou University
- Wenzhou
- China
| | - Huan Li
- College of Chemistry and Materials Engineering
- Wenzhou University
- Wenzhou
- China
| | - Jianping Liu
- College of Chemistry and Materials Engineering
- Wenzhou University
- Wenzhou
- China
| | - Qing Xu
- College of Chemistry and Materials Engineering
- Wenzhou University
- Wenzhou
- China
- School of Chemistry and Chemical Engineering
| |
Collapse
|
10
|
Elangovan S, Afanasenko A, Haupenthal J, Sun Z, Liu Y, Hirsch AKH, Barta K. From Wood to Tetrahydro-2-benzazepines in Three Waste-Free Steps: Modular Synthesis of Biologically Active Lignin-Derived Scaffolds. ACS CENTRAL SCIENCE 2019; 5:1707-1716. [PMID: 31660439 PMCID: PMC6813559 DOI: 10.1021/acscentsci.9b00781] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Indexed: 05/21/2023]
Abstract
Inherently complex, lignin-derived aromatic monomers comprising valuable structural moieties present in many pharmaceuticals would serve as ideal substrates for the construction of biologically active molecules. Here, we describe a strategy that incorporates all intrinsic functional groups present in platform chemicals obtained by lignin depolymerization into value-added amines, using sustainable catalytic methods and benign solvents. Our strikingly efficient protocol provides access to libraries of aminoalkyl-phenol derivatives and seven-membered N-heterocycles directly from wood in two, respectively three, waste-free steps. Several molecules in these libraries have shown promising antibacterial or anticancer activities, emphasizing the advantage of this modular synthetic strategy and the potential for drug discovery. The sustainable catalytic pathways presented here can lead to significant benefits for the pharmaceutical industry where reduction of hazardous waste is a prime concern, and the described strategies that lead to high-value products from non-edible biomass waste streams also markedly increase the economic feasibility of lignocellulosic biorefineries.
Collapse
Affiliation(s)
- Saravanakumar Elangovan
- Stratingh
Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Anastasiia Afanasenko
- Stratingh
Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Jörg Haupenthal
- Department
of Drug Design and Optimization, Helmholtz
Institute for Pharmaceutical Research Saarland (HIPS) − Helmholtz
Centre for Infection Research (HZI), Campus Building E8.1, 66123 Saarbrücken, Germany
| | - Zhuohua Sun
- Stratingh
Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Yongzhuang Liu
- Stratingh
Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Anna K. H. Hirsch
- Department
of Drug Design and Optimization, Helmholtz
Institute for Pharmaceutical Research Saarland (HIPS) − Helmholtz
Centre for Infection Research (HZI), Campus Building E8.1, 66123 Saarbrücken, Germany
- Department
of Pharmacy, Medicinal Chemistry, Saarland
University, Campus Building
E8.1, 66123 Saarbrücken, Germany
| | - Katalin Barta
- Stratingh
Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
- E-mail:
| |
Collapse
|
11
|
Vanegas S, Rodríguez D, Ochoa‐Puentes C. An Efficient and Eco‐Friendly One‐Pot Synthesis of Pyrazolopyridines Mediated by Choline Chloride/Urea Eutectic Mixture. ChemistrySelect 2019. [DOI: 10.1002/slct.201900314] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Sebastián Vanegas
- Laboratorio de Síntesis Orgánica SostenibleDepartamento de QuímicaUniversidad Nacional de Colombia–Sede Bogotá Carrera 45 # 26–85, A.A. 5997 Bogotá Colombia
| | - Daniel Rodríguez
- Laboratorio de Síntesis Orgánica SostenibleDepartamento de QuímicaUniversidad Nacional de Colombia–Sede Bogotá Carrera 45 # 26–85, A.A. 5997 Bogotá Colombia
| | - Cristian Ochoa‐Puentes
- Laboratorio de Síntesis Orgánica SostenibleDepartamento de QuímicaUniversidad Nacional de Colombia–Sede Bogotá Carrera 45 # 26–85, A.A. 5997 Bogotá Colombia
| |
Collapse
|
12
|
|
13
|
Tavakol H, Mahmoudi A, Ranjbari MA. Synthesis Of di- and tri-substituted thiourea derivatives in water using choline chloride–urea catalyst. J Sulphur Chem 2018. [DOI: 10.1080/17415993.2018.1533014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- Hossein Tavakol
- Department of Chemistry, Isfahan University of Technology, Isfahan, Iran
| | - Amir Mahmoudi
- Department of Chemistry, Isfahan University of Technology, Isfahan, Iran
| | | |
Collapse
|
14
|
Satlewal A, Agrawal R, Bhagia S, Sangoro J, Ragauskas AJ. Natural deep eutectic solvents for lignocellulosic biomass pretreatment: Recent developments, challenges and novel opportunities. Biotechnol Adv 2018; 36:2032-2050. [PMID: 30193965 DOI: 10.1016/j.biotechadv.2018.08.009] [Citation(s) in RCA: 151] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 07/09/2018] [Accepted: 08/26/2018] [Indexed: 12/26/2022]
Abstract
Conversion of lignocellulosic biomass to fuels and chemicals has attracted immense research and development around the world. Lowering recalcitrance of biomass in a cost-effective manner is a challenge to commercialize biomass-based technologies. Deep eutectic solvents (DESs) are new 'green' solvents that have a high potential for biomass processing because of their low cost, low toxicity, biodegradability, easy recycling and reuse. This article discusses the properties of DESs and recent advances in their application for lignocellulosic biomass processing. The effectiveness of DESs in hydrolyzing lignin-carbohydrate complexes, removing lignin/hemicellulose from biomass as well as their effect on biomass deconstruction, crystallinity and enzymatic digestibility have been discussed. Moreover, this review presents recent findings on the compatibility of natural DESs with enzymes and microorganisms.
Collapse
Affiliation(s)
- Alok Satlewal
- Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, TN 37996, USA; Joint Institute for Biological Sciences, Biosciences Division, Oak Ridge National Laboratory (ORNL), TN 37831, USA; Department of Bioenergy, DBT-IOC Centre for Advanced Bioenergy Research, Research and Development Centre, Indian Oil Corporation Ltd, Faridabad, Haryana 121007, India
| | - Ruchi Agrawal
- Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, TN 37996, USA; Department of Bioenergy, DBT-IOC Centre for Advanced Bioenergy Research, Research and Development Centre, Indian Oil Corporation Ltd, Faridabad, Haryana 121007, India
| | - Samarthya Bhagia
- Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, TN 37996, USA.
| | - Joshua Sangoro
- Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, TN 37996, USA.
| | - Arthur J Ragauskas
- Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, TN 37996, USA; Joint Institute for Biological Sciences, Biosciences Division, Oak Ridge National Laboratory (ORNL), TN 37831, USA; Department of Forestry, Wildlife, and Fisheries, Center for Renewable Carbon, University of Tennessee, Institute of Agriculture, Knoxville, TN 37996, USA.
| |
Collapse
|
15
|
Rao RN, Maiti B, Chanda K. Application of Pictet-Spengler Reaction to Indole-Based Alkaloids Containing Tetrahydro-β-carboline Scaffold in Combinatorial Chemistry. ACS COMBINATORIAL SCIENCE 2017; 19:199-228. [PMID: 28276678 DOI: 10.1021/acscombsci.6b00184] [Citation(s) in RCA: 93] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Indole-based alkaloids are well-known in the literature for their diverse biological properties. Polysubstituted optically active tetrahydro-β-carboline derivatives functionalized on C-1 position are the common structural motif in most of the indole-based alkaloids, as well as highly marketed drugs. The stereoselective Pictet-Spengler reaction is one of the currently most important synthetic techniques used for the preparation of these privileged tetrahydro-β-carboline scaffolds. To date, there are numerous research reports that have been published on the synthesis of the tetrahydro-β-carboline scaffold both on solid phase, as well as in solution phase. Moreover rapid growth has been observed for the enantioselective synthesis of tetrahydro-β-carboline scaffold using chiral organocatalysts. In this Review, efforts have been taken to shed light on the latest information available on different strategies to synthesize tetrahydro-β-carboline both on solid phase and in solution phase during the last 20 years. Furthermore, we believe that the present synthetic methodologies covered in this Review will help to improve the status of this privileged tetrahydro-β-carboline scaffold in its use for drug discovery.
Collapse
Affiliation(s)
- R. Nishanth Rao
- Department of Chemistry,
School of Advanced Sciences, VIT University, Vellore-632014, India
| | - Barnali Maiti
- Department of Chemistry,
School of Advanced Sciences, VIT University, Vellore-632014, India
| | - Kaushik Chanda
- Department of Chemistry,
School of Advanced Sciences, VIT University, Vellore-632014, India
| |
Collapse
|
16
|
Shaabani A, Hooshmand SE, Afaridoun H. A green chemical approach: a straightforward one-pot synthesis of 2-aminothiophene derivatives via Gewald reaction in deep eutectic solvents. MONATSHEFTE FUR CHEMIE 2016. [DOI: 10.1007/s00706-016-1787-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
17
|
Chandam DR, Mulik AG, Patil DR, Patravale AP, Kumbhar DR, Deshmukh MB. Oxalic acid dihydrate and proline based low transition temperature mixture: An efficient synthesis of spiro [diindenopyridine-indoline] triones derivatives. J Mol Liq 2016. [DOI: 10.1016/j.molliq.2016.02.101] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
18
|
Alonso DA, Baeza A, Chinchilla R, Guillena G, Pastor IM, Ramón DJ. Deep Eutectic Solvents: The Organic Reaction Medium of the Century. European J Org Chem 2016. [DOI: 10.1002/ejoc.201501197] [Citation(s) in RCA: 421] [Impact Index Per Article: 46.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
19
|
Navarro CA, Sierra CA, Ochoa-Puentes C. Evaluation of sodium acetate trihydrate–urea DES as a benign reaction media for the Biginelli reaction. Unexpected synthesis of methylenebis(3-hydroxy-5,5-dimethylcyclohex-2-enones), hexahydroxanthene-1,8-diones and hexahydroacridine-1,8-diones. RSC Adv 2016. [DOI: 10.1039/c6ra13848a] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
In this work, the low melting mixture sodium acetate trihydrate–urea was synthesized and the eutectic composition was determined and characterized. The performance of this deep eutectic solvent on the Biginelli reaction was evaluated.
Collapse
Affiliation(s)
- Camilo A. Navarro
- Grupo de Investigación en Macromoléculas
- Departamento de Química
- Universidad Nacional de Colombia – Sede Bogotá
- Bogotá
- Colombia
| | - Cesar A. Sierra
- Grupo de Investigación en Macromoléculas
- Departamento de Química
- Universidad Nacional de Colombia – Sede Bogotá
- Bogotá
- Colombia
| | - Cristian Ochoa-Puentes
- Grupo de Investigación en Macromoléculas
- Departamento de Química
- Universidad Nacional de Colombia – Sede Bogotá
- Bogotá
- Colombia
| |
Collapse
|
20
|
Patil P, Pratap A. Choline Chloride Catalyzed Amidation of Fatty Acid Ester to Monoethanolamide: A Green Approach. J Oleo Sci 2016; 65:75-9. [DOI: 10.5650/jos.ess15070] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Pramod Patil
- Department of Oils, Oleo chemicals and Surfactants Technology, Institute of Chemical Technology (University under Section 3 of UGC Act 1956; Formerly UDCT/ UICT)
| | - Amit Pratap
- Department of Oils, Oleo chemicals and Surfactants Technology, Institute of Chemical Technology (University under Section 3 of UGC Act 1956; Formerly UDCT/ UICT)
| |
Collapse
|
21
|
Rokade SM, Bhate PM. Ferrier reaction in a deep eutectic solvent. Carbohydr Res 2015; 415:28-30. [PMID: 26279523 DOI: 10.1016/j.carres.2015.07.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Revised: 07/24/2015] [Accepted: 07/25/2015] [Indexed: 12/01/2022]
Abstract
A mild and efficient synthesis of 2,3-unsaturated sugar derivatives has been achieved by conducting the Ferrier reaction in a deep eutectic solvent (DES). A wide range of alcohols including primary, secondary, benzylic, and sugar-derived primary alcohols can be used. Advantages include good yields, shorter reaction times and recyclability of DES.
Collapse
Affiliation(s)
- Sunil M Rokade
- Department of Dyestuff Technology, Institute of Chemical Technology (formerly UDCT), N. P. Marg, Matunga, Mumbai 400 019, Maharashtra, India
| | - Prakash M Bhate
- Department of Dyestuff Technology, Institute of Chemical Technology (formerly UDCT), N. P. Marg, Matunga, Mumbai 400 019, Maharashtra, India.
| |
Collapse
|
22
|
Pakhare DS, Kusurkar RS. Synthesis of tetrahydro-β-carbolines, β-carbolines, and natural products, (±)-harmicine, eudistomin U and canthine by reductive Pictet Spengler cyclization. Tetrahedron Lett 2015. [DOI: 10.1016/j.tetlet.2015.09.052] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
23
|
Liu P, Hao JW, Mo LP, Zhang ZH. Recent advances in the application of deep eutectic solvents as sustainable media as well as catalysts in organic reactions. RSC Adv 2015. [DOI: 10.1039/c5ra05746a] [Citation(s) in RCA: 420] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
This review highlights the recent advances using deep eutectic solvents (DESs), deep eutectic ionic liquids (DEILs), low-melting mixtures (LMMs) or low transition temperature mixtures (LTTMs) as green media as well as catalysts in organic reactions.
Collapse
Affiliation(s)
- Peng Liu
- College of Chemistry and Material Science
- Hebei Normal University
- Shijiazhuang 050024
- P. R. China
| | - Jian-Wu Hao
- College of Chemistry and Material Science
- Hebei Normal University
- Shijiazhuang 050024
- P. R. China
| | - Li-Ping Mo
- College of Chemistry and Material Science
- Hebei Normal University
- Shijiazhuang 050024
- P. R. China
| | - Zhan-Hui Zhang
- College of Chemistry and Material Science
- Hebei Normal University
- Shijiazhuang 050024
- P. R. China
| |
Collapse
|