1
|
Papis M, Loro C, Penso M, Broggini G, Foschi F. Synthesis of Morpholino Nucleosides Starting From Enantiopure Glycidol. Org Chem Front 2022. [DOI: 10.1039/d2qo00400c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A protocol for the synthesis of modified morpholino monomers was performed in few steps through the condensation between 6-hydroxymethyl-morpholine acetal and nucleobases under Lewis acid conditions. The key common precursor...
Collapse
|
2
|
Chemical evolution of cyclic dinucleotides: Perspective of the analogs and their preparation. Tetrahedron 2021. [DOI: 10.1016/j.tet.2021.132096] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
3
|
Shen Y, Yang S, Hu X, Zhang M, Ma X, Wang Z, Hou Y, Bai G. Natural product puerarin activates Akt and ameliorates glucose and lipid metabolism dysfunction in hepatic cells. J Funct Foods 2019. [DOI: 10.1016/j.jff.2019.02.035] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
|
4
|
Dialer CR, Stazzoni S, Drexler DJ, Müller FM, Veth S, Pichler A, Okamura H, Witte G, Hopfner KP, Carell T. A Click-Chemistry Linked 2'3'-cGAMP Analogue. Chemistry 2019; 25:2089-2095. [PMID: 30536650 DOI: 10.1002/chem.201805409] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Indexed: 11/09/2022]
Abstract
2'3'-cGAMP is an uncanonical cyclic dinucleotide where one A and one G base are connected via a 3'-5' and a unique 2'-5' linkage. The molecule is produced by the cyclase cGAS in response to cytosolic DNA binding. cGAMP activates STING and hence one of the most powerful pathways of innate immunity. cGAMP analogues with uncharged linkages that feature better cellular penetrability are currently highly desired. Here, the synthesis of a cGAMP analogue with one amide and one triazole linkage is reported. The molecule is best prepared via a first CuI -catalyzed click reaction, which establishes the triazole, while the cyclization is achieved by macrolactamization.
Collapse
Affiliation(s)
- Clemens Reto Dialer
- Department of Chemistry, Ludwig-Maximilians-Universität München, Butenandtstrasse 5-13, 81377, Munich, Germany
| | - Samuele Stazzoni
- Department of Chemistry, Ludwig-Maximilians-Universität München, Butenandtstrasse 5-13, 81377, Munich, Germany
| | - David Jan Drexler
- Gene Center and Department of Biochemistry, Ludwig-Maximilians-Universität München, Feodor-Lynen-Strasse 25, 81377, Munich, Germany
| | - Felix Moritz Müller
- Department of Chemistry, Ludwig-Maximilians-Universität München, Butenandtstrasse 5-13, 81377, Munich, Germany
| | - Simon Veth
- Department of Chemistry, Ludwig-Maximilians-Universität München, Butenandtstrasse 5-13, 81377, Munich, Germany
| | - Alexander Pichler
- Department of Chemistry, Ludwig-Maximilians-Universität München, Butenandtstrasse 5-13, 81377, Munich, Germany
| | - Hidenori Okamura
- Department of Chemistry, Ludwig-Maximilians-Universität München, Butenandtstrasse 5-13, 81377, Munich, Germany
| | - Gregor Witte
- Gene Center and Department of Biochemistry, Ludwig-Maximilians-Universität München, Feodor-Lynen-Strasse 25, 81377, Munich, Germany
| | - Karl-Peter Hopfner
- Gene Center and Department of Biochemistry, Ludwig-Maximilians-Universität München, Feodor-Lynen-Strasse 25, 81377, Munich, Germany
| | - Thomas Carell
- Department of Chemistry, Ludwig-Maximilians-Universität München, Butenandtstrasse 5-13, 81377, Munich, Germany
| |
Collapse
|
5
|
Dereven’kov IA, Shpagilev NI, Makarov SV. Mechanism of the Reaction between Cobalamin(II) and Periodate. RUSSIAN JOURNAL OF PHYSICAL CHEMISTRY A 2018. [DOI: 10.1134/s0036024418110080] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
6
|
Valkai L, Peintler G, Horváth AK. Clarifying the Equilibrium Speciation of Periodate Ions in Aqueous Medium. Inorg Chem 2017; 56:11417-11425. [PMID: 28858495 DOI: 10.1021/acs.inorgchem.7b01911] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Equilibria of periodate ion were reinvestigated in aqueous solution by using potentiometric titration, UV and Raman spectroscopies, and gravimetry simultaneously at 0.5 M ionic strength and at 25.0 ± 0.2 °C. Stepwise acid dissociation constants of orthoperiodic acid were found to be pK1 = 0.98 ± 0.18, pK2 = 7.42 ± 0.03, and pK3 = 10.99 ± 0.02, as well as pK2 = 7.55 ± 0.04 and pK3 = 11.25 ± 0.03 in the presence of sodium nitrate and sodium perchlorate as background salts, respectively. pK1 cannot be determined unambiguously from our experiments in the presence of sodium perchlorate. The molar absorptivity spectrum of H4IO6- and H3IO62- was determined in the range of 215-335 nm, as major species of periodate present from slightly acidic to slightly alkaline conditions. The solubility of periodate decreases significantly under alkaline conditions, and it was determined to be (2.8 ± 0.4) mM by gravimetry, under our experimental conditions. None of these studies gave any clear evidence for an ortho-meta equilibrium and the frequently invoked dimerization of periodate. All measurements can quantitatively be described by the presence of orthoperiodic acid and its three successive deprotonation steps.
Collapse
Affiliation(s)
- László Valkai
- Faculty of Sciences, Department of Inorganic Chemistry, University of Pécs , Pécs, Hungary
| | - Gábor Peintler
- Faculty of Science and Informatics, Department of Physical Chemistry and Material Sciences, University of Szeged , Szeged, Hungary
| | - Attila K Horváth
- Faculty of Sciences, Department of Inorganic Chemistry, University of Pécs , Pécs, Hungary
| |
Collapse
|
7
|
Pal C, Chakraborty TK. Synthesis of Amide-Linked Cyclic Dinucleotide Analogues with Pyrimidine Bases. ASIAN J ORG CHEM 2017. [DOI: 10.1002/ajoc.201700260] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Chandan Pal
- Department of Organic Chemistry; Indian Institute of Science; Bangalore- 560012 India
| | | |
Collapse
|
8
|
Fletcher MH, Burns-Lynch CE, Knouse KW, Abraham LT, DeBrosse CW, Wuest WM. A novel application of the Staudinger ligation to access neutral cyclic di-nucleotide analog precursors via a divergent method. RSC Adv 2017; 7:29835-29838. [PMID: 28670448 PMCID: PMC5472050 DOI: 10.1039/c7ra06045a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Accepted: 06/01/2017] [Indexed: 11/21/2022] Open
Abstract
Our efforts to develop a scalable and divergent synthesis of cyclic di-nucleotide analog precursors have resulted in (1) an orthogonally protected di-amino carbohydrate as well as (2) the novel application of the Staudinger ligation to provide medium-sized macrocycles featuring carbamate or urea linkages.
Collapse
Affiliation(s)
- M H Fletcher
- Department of Chemistry, Temple University, Philadelphia, PA 19122, USA
| | - C E Burns-Lynch
- Department of Chemistry, Temple University, Philadelphia, PA 19122, USA
| | - K W Knouse
- Department of Chemistry, Temple University, Philadelphia, PA 19122, USA
| | - L T Abraham
- Department of Chemistry, Temple University, Philadelphia, PA 19122, USA
| | - C W DeBrosse
- Department of Chemistry, Temple University, Philadelphia, PA 19122, USA
| | - W M Wuest
- Department of Chemistry, Emory University, Atlanta, GA 30322, USA.
| |
Collapse
|
9
|
Opoku-Temeng C, Zhou J, Zheng Y, Su J, Sintim HO. Cyclic dinucleotide (c-di-GMP, c-di-AMP, and cGAMP) signalings have come of age to be inhibited by small molecules. Chem Commun (Camb) 2016; 52:9327-42. [PMID: 27339003 DOI: 10.1039/c6cc03439j] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Bacteria utilize nucleotide-based second messengers to regulate a myriad of physiological processes. Cyclic dinucleotides have emerged as central regulators of bacterial physiology, controlling processes ranging from cell wall homeostasis to virulence production, and so far over thousands of manuscripts have provided biological insights into c-di-NMP signaling. The development of small molecule inhibitors of c-di-NMP signaling has significantly lagged behind. Recent developments in assays that allow for high-throughput screening of inhibitors suggest that the time is right for a concerted effort to identify inhibitors of these fascinating second messengers. Herein, we review c-di-NMP signaling and small molecules that have been developed to inhibit cyclic dinucleotide-related enzymes.
Collapse
Affiliation(s)
- Clement Opoku-Temeng
- Department of Chemistry, Center for Drug Discovery, Purdue University, West Lafayette, IN 47907, USA.
| | | | | | | | | |
Collapse
|