1
|
Agrahari AK, Kumar S, Pandey MD, Rajkhowa S, Jaiswal MK, Tiwari VK. Click Chemistry ‐ Inspired Synthesis of Porphyrin Hybrid Glycodendrimers as Fluorescent Sensor for Cu(II) Ions. ChemistrySelect 2022. [DOI: 10.1002/slct.202202273] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Anand K. Agrahari
- Department of Chemistry Institute of Science Banaras Hindu University Varanasi UP-221005 INDIA
- Department of Chemistry University of California-Davis Davis CA 95616 U.S.A
| | - Sunil Kumar
- Department of Chemistry Institute of Science Banaras Hindu University Varanasi UP-221005 INDIA
| | - Mrituanjay D. Pandey
- Department of Chemistry Institute of Science Banaras Hindu University Varanasi UP-221005 INDIA
| | - Sanchayita Rajkhowa
- Department of Chemistry The Assam Royal Global University Guwahati Assam 781035 INDIA
| | - Manoj K. Jaiswal
- Department of Chemistry Institute of Science Banaras Hindu University Varanasi UP-221005 INDIA
| | - Vinod K. Tiwari
- Department of Chemistry Institute of Science Banaras Hindu University Varanasi UP-221005 INDIA
| |
Collapse
|
2
|
Godlewski B, Baran D, de Robichon M, Ferry A, Ostrowski S, Malinowski M. Sonogashira cross-coupling as a key step in the synthesis of new glycoporphyrins. Org Chem Front 2022. [DOI: 10.1039/d1qo01909k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Palladium catalysis is reported as an efficient tool to afford unique glycoporphyrins via Sonogashira cross-coupling.
Collapse
Affiliation(s)
- Bartosz Godlewski
- Faculty of Chemistry, Warsaw University of Technology, ul. Noakowskiego 3, 00-664 Warsaw, Poland
| | - Dariusz Baran
- Faculty of Chemistry, Warsaw University of Technology, ul. Noakowskiego 3, 00-664 Warsaw, Poland
| | - Morgane de Robichon
- CY Cergy-Paris Université, BioCIS, CNRS, 5 mail Gay-Lussac, 95000 Cergy-Pontoise cedex, France
- Université Paris-Saclay, BioCIS, CNRS, 5, rue J-B Clément, 92296 Châtenay-Malabry cedex, France
| | - Angélique Ferry
- CY Cergy-Paris Université, BioCIS, CNRS, 5 mail Gay-Lussac, 95000 Cergy-Pontoise cedex, France
- Université Paris-Saclay, BioCIS, CNRS, 5, rue J-B Clément, 92296 Châtenay-Malabry cedex, France
| | - Stanisław Ostrowski
- Faculty of Chemistry, Warsaw University of Technology, ul. Noakowskiego 3, 00-664 Warsaw, Poland
| | - Maciej Malinowski
- Faculty of Chemistry, Warsaw University of Technology, ul. Noakowskiego 3, 00-664 Warsaw, Poland
| |
Collapse
|
3
|
Harvey DJ. ANALYSIS OF CARBOHYDRATES AND GLYCOCONJUGATES BY MATRIX-ASSISTED LASER DESORPTION/IONIZATION MASS SPECTROMETRY: AN UPDATE FOR 2015-2016. MASS SPECTROMETRY REVIEWS 2021; 40:408-565. [PMID: 33725404 DOI: 10.1002/mas.21651] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 07/24/2020] [Indexed: 06/12/2023]
Abstract
This review is the ninth update of the original article published in 1999 on the application of matrix-assisted laser desorption/ionization (MALDI) mass spectrometry to the analysis of carbohydrates and glycoconjugates and brings coverage of the literature to the end of 2016. Also included are papers that describe methods appropriate to analysis by MALDI, such as sample preparation techniques, even though the ionization method is not MALDI. Topics covered in the first part of the review include general aspects such as theory of the MALDI process, matrices, derivatization, MALDI imaging, fragmentation and arrays. The second part of the review is devoted to applications to various structural types such as oligo- and poly-saccharides, glycoproteins, glycolipids, glycosides and biopharmaceuticals. Much of this material is presented in tabular form. The third part of the review covers medical and industrial applications of the technique, studies of enzyme reactions and applications to chemical synthesis. The reported work shows increasing use of combined new techniques such as ion mobility and the enormous impact that MALDI imaging is having. MALDI, although invented over 30 years ago is still an ideal technique for carbohydrate analysis and advancements in the technique and range of applications show no sign of deminishing. © 2020 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- David J Harvey
- Nuffield Department of Medicine, Target Discovery Institute, University of Oxford, Roosevelt Drive, Oxford, OX3 7FZ, United Kingdom
| |
Collapse
|
4
|
Agrahari AK, Bose P, Jaiswal MK, Rajkhowa S, Singh AS, Hotha S, Mishra N, Tiwari VK. Cu(I)-Catalyzed Click Chemistry in Glycoscience and Their Diverse Applications. Chem Rev 2021; 121:7638-7956. [PMID: 34165284 DOI: 10.1021/acs.chemrev.0c00920] [Citation(s) in RCA: 182] [Impact Index Per Article: 45.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Copper(I)-catalyzed 1,3-dipolar cycloaddition between organic azides and terminal alkynes, commonly known as CuAAC or click chemistry, has been identified as one of the most successful, versatile, reliable, and modular strategies for the rapid and regioselective construction of 1,4-disubstituted 1,2,3-triazoles as diversely functionalized molecules. Carbohydrates, an integral part of living cells, have several fascinating features, including their structural diversity, biocompatibility, bioavailability, hydrophilicity, and superior ADME properties with minimal toxicity, which support increased demand to explore them as versatile scaffolds for easy access to diverse glycohybrids and well-defined glycoconjugates for complete chemical, biochemical, and pharmacological investigations. This review highlights the successful development of CuAAC or click chemistry in emerging areas of glycoscience, including the synthesis of triazole appended carbohydrate-containing molecular architectures (mainly glycohybrids, glycoconjugates, glycopolymers, glycopeptides, glycoproteins, glycolipids, glycoclusters, and glycodendrimers through regioselective triazole forming modular and bio-orthogonal coupling protocols). It discusses the widespread applications of these glycoproducts as enzyme inhibitors in drug discovery and development, sensing, gelation, chelation, glycosylation, and catalysis. This review also covers the impact of click chemistry and provides future perspectives on its role in various emerging disciplines of science and technology.
Collapse
Affiliation(s)
- Anand K Agrahari
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India
| | - Priyanka Bose
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India
| | - Manoj K Jaiswal
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India
| | - Sanchayita Rajkhowa
- Department of Chemistry, Jorhat Institute of Science and Technology (JIST), Jorhat, Assam 785010, India
| | - Anoop S Singh
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India
| | - Srinivas Hotha
- Department of Chemistry, Indian Institute of Science and Engineering Research (IISER), Pune, Maharashtra 411021, India
| | - Nidhi Mishra
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India
| | - Vinod K Tiwari
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India
| |
Collapse
|
5
|
Dixon CF, Nottingham AN, Lozano AF, Sizemore JA, Russell LA, Valiton C, Newell KL, Babin D, Bridges WT, Parris MR, Shchirov DV, Snyder NL, Ruppel JV. Synthesis and evaluation of porphyrin glycoconjugates varying in linker length: preliminary effects on the photodynamic inactivation of Mycobacterium smegmatis. RSC Adv 2021; 2021:7037-7042. [PMID: 34336191 PMCID: PMC8320722 DOI: 10.1039/d0ra10793j] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 01/28/2021] [Indexed: 11/21/2022] Open
Abstract
Porphyrins have served as common photosensitizing agents in photomedicine due to their unique properties and broad therapeutic potential. While photodynamic therapy (PDT) offers a promising avenue for novel drug development, limitations in application due to selectivity, and the inherent hydrophobicity and poor solubility of porphyrins and other organic photosensitizers has been noted. Porphyrin glycoconjugates have recently gained attention for their potential to overcome these limitations. However, little has been done to explore the effects of the linker between the carbohydrate and porphyrin analog. Here we report the synthesis of over 30 new carbohydrate-porphyrin conjugates which vary in the nature of the sugar (Gal, Glc, GalNAc, GlcNAc, Lac and Tre) and the distance between the porphyrin macrocycle and the carbohydrate. Porphyrin glycoconjugates were synthesized in three steps from a readily available meso-brominated diphenylporphyrin analog by (i) C-O coupling of an appropriate TMS-protected alkynol consisting of two to six carbon spacers (ii) removal of the TMS protecting group, and (iii) CuAAC conjugation with an appropriate glycosyl azide. First studies with trehalose-based glycoporphyrins and M. smeg were used to determine the effects of the linker in photodynamic inactivation (PDI) studies. Preliminary results demonstrated an increase in photodynamic inactivation with a decrease in linker length. Investigations are underway to determine the mechanism for these results.
Collapse
Affiliation(s)
| | - Ana N. Nottingham
- Davidson College, Department of ChemistryBox 7120DavidsonNC 28035USA
| | | | | | - Logan A. Russell
- Davidson College, Department of ChemistryBox 7120DavidsonNC 28035USA
| | | | | | - Dominique Babin
- Davidson College, Department of ChemistryBox 7120DavidsonNC 28035USA
| | | | | | | | - Nicole L. Snyder
- Davidson College, Department of ChemistryBox 7120DavidsonNC 28035USA
| | | |
Collapse
|
6
|
Williams TM, Kaufman NEM, Zhou Z, Singh SS, Jois SD, Vicente MDGH. Click Conjugation of Boron Dipyrromethene (BODIPY) Fluorophores to EGFR-Targeting Linear and Cyclic Peptides. Molecules 2021; 26:molecules26030593. [PMID: 33498632 PMCID: PMC7865655 DOI: 10.3390/molecules26030593] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 01/18/2021] [Accepted: 01/20/2021] [Indexed: 12/15/2022] Open
Abstract
Through a simple 1,3-cycloaddition reaction, three BODIPY-peptide conjugates that target the extracellular domain of the epidermal growth factor receptor (EGFR) were prepared and their ability for binding to EGFR was investigated. The peptide ligands K(N3)LARLLT and its cyclic analog cyclo(K(N3)larllt, previously shown to have high affinity for binding to the extracellular domain of EGFR, were conjugated to alkynyl-functionalized BODIPY dyes 1 and 2 via a copper-catalyzed click reaction. This reaction produced conjugates 3, 4, and 5 in high yields (70–82%). In vitro studies using human carcinoma HEp2 cells that overexpress EGFR demonstrated high cellular uptake, particularly for the cyclic peptide conjugate 5, and low cytotoxicity in light (~1 J·cm−2) and darkness. Surface plasmon resonance (SPR) results show binding affinity of the three BODIPY-peptide conjugates for EGFR, particularly for 5 bearing the cyclic peptide. Competitive binding studies using three cell lines with different expressions of EGFR show that 5 binds specifically to EGFR-overexpressing colon cancer cells. Among the three conjugates, 5 bearing the cyclic peptide exhibited the highest affinity for binding to the EGFR protein.
Collapse
Affiliation(s)
- Tyrslai M. Williams
- Department of Chemistry, Louisiana State University, Baton Rouge, LA 70803, USA; (T.M.W.); (N.E.M.K.); (Z.Z.)
| | - Nichole E. M. Kaufman
- Department of Chemistry, Louisiana State University, Baton Rouge, LA 70803, USA; (T.M.W.); (N.E.M.K.); (Z.Z.)
| | - Zehua Zhou
- Department of Chemistry, Louisiana State University, Baton Rouge, LA 70803, USA; (T.M.W.); (N.E.M.K.); (Z.Z.)
| | - Sitanshu S. Singh
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana at Monroe, Monroe, LA 71201, USA; (S.S.S.); (S.D.J.)
| | - Seetharama D. Jois
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana at Monroe, Monroe, LA 71201, USA; (S.S.S.); (S.D.J.)
| | - Maria da Graça H. Vicente
- Department of Chemistry, Louisiana State University, Baton Rouge, LA 70803, USA; (T.M.W.); (N.E.M.K.); (Z.Z.)
- Correspondence: ; Tel.: +1-225-578-7405; Fax: +1-225-578-3458
| |
Collapse
|
7
|
Araújo ARL, Tomé AC, Santos CIM, Faustino MAF, Neves MGPMS, Simões MMQ, Moura NMM, Abu-Orabi ST, Cavaleiro JAS. Azides and Porphyrinoids: Synthetic Approaches and Applications. Part 1-Azides, Porphyrins and Corroles. Molecules 2020; 25:E1662. [PMID: 32260294 PMCID: PMC7181322 DOI: 10.3390/molecules25071662] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 03/31/2020] [Accepted: 04/02/2020] [Indexed: 12/12/2022] Open
Abstract
Azides and porphyrinoids (such as porphyrin and corrole macrocycles) can give rise to new derivatives with significant biological properties and as new materials' components. Significant synthetic approaches have been studied. A wide range of products (e.g., microporous organic networks, rotaxane and dendritic motifs, dendrimers as liquid crystals, as blood substitutes for transfusions and many others) can now be available and used for several medicinal and industrial purposes.
Collapse
Affiliation(s)
- Ana R. L. Araújo
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal; (A.R.L.A.); (A.C.T.); (C.I.M.S.); (M.A.F.F.); (M.G.P.M.S.N.); (M.M.Q.S.)
| | - Augusto C. Tomé
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal; (A.R.L.A.); (A.C.T.); (C.I.M.S.); (M.A.F.F.); (M.G.P.M.S.N.); (M.M.Q.S.)
| | - Carla I. M. Santos
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal; (A.R.L.A.); (A.C.T.); (C.I.M.S.); (M.A.F.F.); (M.G.P.M.S.N.); (M.M.Q.S.)
- CQE, Centro de Química Estrutural and IN-Institute of Nanoscience and Nanotechnology of Instituto Superior Técnico, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
| | - Maria A. F. Faustino
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal; (A.R.L.A.); (A.C.T.); (C.I.M.S.); (M.A.F.F.); (M.G.P.M.S.N.); (M.M.Q.S.)
| | - Maria G. P. M. S. Neves
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal; (A.R.L.A.); (A.C.T.); (C.I.M.S.); (M.A.F.F.); (M.G.P.M.S.N.); (M.M.Q.S.)
| | - Mário M. Q. Simões
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal; (A.R.L.A.); (A.C.T.); (C.I.M.S.); (M.A.F.F.); (M.G.P.M.S.N.); (M.M.Q.S.)
| | - Nuno M. M. Moura
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal; (A.R.L.A.); (A.C.T.); (C.I.M.S.); (M.A.F.F.); (M.G.P.M.S.N.); (M.M.Q.S.)
| | | | - José A. S. Cavaleiro
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal; (A.R.L.A.); (A.C.T.); (C.I.M.S.); (M.A.F.F.); (M.G.P.M.S.N.); (M.M.Q.S.)
| |
Collapse
|
8
|
Bennion MC, Burch MA, Dennis DG, Lech ME, Neuhaus K, Fendler NL, Parris MR, Cuadra JE, Dixon CF, Mukosera GT, Blauch DN, Hartmann L, Snyder NL, Ruppel JV. Synthesis of Porphyrin and Bacteriochlorin Glycoconjugates through CuAAC Reaction Tuning. European J Org Chem 2019; 2019:6496-6503. [PMID: 33041648 PMCID: PMC7546392 DOI: 10.1002/ejoc.201901128] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Indexed: 02/06/2023]
Abstract
Rapid and reproducible access to a series of unique porphyrin and bacteriochlorin glycoconjugates, including meso-glycosylated porphyrins and bacteriochlorins, and beta-glycosylated porphyrins, via copper catalyzed azide-alkyne 1,3-dipolar cycloaddition (CuAAC) is reported for the first time. The work presented highlights the system-dependent reaction conditions required for glycosylation to porphyrins and bacteriochlorins based on the unique electronic properties of each ring system. Attenuated reaction conditions were used to synthesize fifteen new glycosylated porphyrin and bacteriochlorin analogs in 74 - 99% yield, and were extended to solid support to produce the first oligo(amidoamine)-based porphyrin glycoconjugate. These compounds hold significant potential as next generation water soluble catalysts and photodynamic therapy/photodynamic inactivation (PDT/PDI) agents.
Collapse
Affiliation(s)
- Matthew C Bennion
- Division of Natural Sciences and Engineering University of South Carolina Upstate 800 University Way, Spartanburg SC. 29303 USA
| | - Morgan A Burch
- Department of Chemistry Davidson College 102 North Main Street, Davidson, NC 28035 USA
| | - David G Dennis
- Division of Natural Sciences and Engineering University of South Carolina Upstate 800 University Way, Spartanburg SC. 29303 USA
| | - Melissa E Lech
- Division of Natural Sciences and Engineering University of South Carolina Upstate 800 University Way, Spartanburg SC. 29303 USA
| | - Kira Neuhaus
- Department of Chemistry Davidson College 102 North Main Street, Davidson, NC 28035 USA
- Department of Organic and Macromolecular Chemistry Heinrich-Heine-University Düsseldorf Universitätsstraße 1, 40225 Düsseldorf, Germany
| | - Nikole L Fendler
- Department of Chemistry Davidson College 102 North Main Street, Davidson, NC 28035 USA
| | - Matthew R Parris
- Division of Natural Sciences and Engineering University of South Carolina Upstate 800 University Way, Spartanburg SC. 29303 USA
| | - Jessica E Cuadra
- Division of Natural Sciences and Engineering University of South Carolina Upstate 800 University Way, Spartanburg SC. 29303 USA
| | - Charlie F Dixon
- Division of Natural Sciences and Engineering University of South Carolina Upstate 800 University Way, Spartanburg SC. 29303 USA
| | - George T Mukosera
- Department of Chemistry Davidson College 102 North Main Street, Davidson, NC 28035 USA
| | - David N Blauch
- Department of Chemistry Davidson College 102 North Main Street, Davidson, NC 28035 USA
| | - Laura Hartmann
- Department of Organic and Macromolecular Chemistry Heinrich-Heine-University Düsseldorf Universitätsstraße 1, 40225 Düsseldorf, Germany
| | - Nicole L Snyder
- Department of Chemistry Davidson College 102 North Main Street, Davidson, NC 28035 USA
| | - Joshua V Ruppel
- Division of Natural Sciences and Engineering University of South Carolina Upstate 800 University Way, Spartanburg SC. 29303 USA
| |
Collapse
|
9
|
Mahmoud AG, Guedes da Silva MFC, Mahmudov KT, Pombeiro AJL. Arylhydrazone ligands as Cu-protectors and -catalysis promoters in the azide-alkyne cycloaddition reaction. Dalton Trans 2019; 48:1774-1785. [PMID: 30640328 DOI: 10.1039/c8dt04771e] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
A series of water soluble copper(ii) complexes, [Cu(κO1O2N-H2L1)(H2O)2]·2H2O (2), [Cu(κO-H3L1)2(H2O)4] (3), [Cu(κO-H4L2)2(H2O)4] (5) and [Cu(H2O)6]·2H2L3·2(CH3)2NCHO (7), were prepared by the reaction of Cu(NO3)2·3H2O with sodium (Z)-2-(2-(1-amino-1,3-dioxobutan-2-ylidene)hydrazineyl)benzenesulfonate, [Na(μ4-1:2κO1,2κO2,3κO3,4κO4-H3L1)]n (1; for 2 and 3), sodium (Z)-3-(2-(1-amino-1,3-dioxobutan-2-ylidene)hydrazineyl)-4-hydroxybenzene-sulfonate, [Na(μ-1κO1,2κO2-H4L2)]2 (4; for 5) or sodium (Z)-2-(2-(1,3-dioxo-1-(phenylamino)butan-2-ylidene)hydrazineyl)naphthalene-1-sulfonate, [Na(μ-1κO1O2,2κO3-H2L3)(CH3OH)2]2 (6; for 7). Compounds 1-7 were fully characterized, also by single-crystal X-ray diffraction analysis, and applied as homogeneous catalysts for the azide-alkyne cycloaddition (AAC) reaction to afford 1,4-disubstituted 1,2,3-triazoles. A structure-catalytic activity relationship has been recognized for the first time on the basis of the occurrence of resonance- and charge-assisted hydrogen bond interactions (RAHB and CAHB), in charge and ligand binding modes, enabling the catalytic activity of the compounds to be ordered as follows: Cu(NO3)2≪7 (complex salt with RAHB and CAHB) < 3 (with RAHB and CAHB) < 5 (with RAHB) < 2 (neither RAHB nor CAHB). Complex 2, without such non-covalent interactions, was found to be the most efficient catalyst for the AAC reaction, affording up to 98% product yield after being placed for 15 min, at 125 °C, in a water/acetonitrile mixture under low power (10 W) MW irradiation.
Collapse
Affiliation(s)
- Abdallah G Mahmoud
- Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal. and Department of Chemistry, Faculty of Science, Helwan University, Ain Helwan, 11795 Cairo, Egypt
| | - M Fátima C Guedes da Silva
- Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal.
| | - Kamran T Mahmudov
- Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal. and Department of Chemistry, Baku State University, Z. Xalilov Str. 23, Az 1148 Baku, Azerbaijan.
| | - Armando J L Pombeiro
- Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal.
| |
Collapse
|
10
|
Arja K, Elgland M, Appelqvist H, Konradsson P, Lindgren M, Nilsson KPR. Synthesis and Characterization of Novel Fluoro-glycosylated Porphyrins that can be Utilized as Theranostic Agents. ChemistryOpen 2018; 7:495-503. [PMID: 30003003 PMCID: PMC6031858 DOI: 10.1002/open.201800020] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Indexed: 12/21/2022] Open
Abstract
Small molecules with modalities for a variety of imaging techniques as well as therapeutic activity are essential, as such molecules render opportunities to simultaneously conduct diagnosis and targeted therapy, so called theranostics. In this regard, glycoporphyrins have proven useful as theranostic agents towards cancer, as well as noncancerous conditions. Herein, the synthesis and characterization of heterobifunctional glycoconjugated porphyrins with two different sugar moieties, a common monosaccharide at three sites, and a 2-fluoro-2-deoxy glucose (FDG) moiety at the fourth site are presented. The fluoro-glycoconjugated porphyrins exhibit properties for multimodal imaging and photodynamic therapy, as well as specificity towards cancer cells. We foresee that our findings might aid in the chemical design of heterobifunctional glycoconjugated porphyrins that could be utilized as theranostic agents.
Collapse
Affiliation(s)
- Katriann Arja
- Division of ChemistryDepartment of Physics, Chemistry and BiologyLinköping University581 83LinköpingSweden
| | - Mathias Elgland
- Division of ChemistryDepartment of Physics, Chemistry and BiologyLinköping University581 83LinköpingSweden
| | - Hanna Appelqvist
- Division of ChemistryDepartment of Physics, Chemistry and BiologyLinköping University581 83LinköpingSweden
| | - Peter Konradsson
- Division of ChemistryDepartment of Physics, Chemistry and BiologyLinköping University581 83LinköpingSweden
| | - Mikael Lindgren
- Department of PhysicsNorwegian University of Science and Technology, NTNU7491TrondheimNorway
| | - K. Peter R. Nilsson
- Division of ChemistryDepartment of Physics, Chemistry and BiologyLinköping University581 83LinköpingSweden
| |
Collapse
|
11
|
Ngo TH, Labuta J, Lim GN, Webre WA, D'Souza F, Karr PA, Lewis JEM, Hill JP, Ariga K, Goldup SM. Porphyrinoid rotaxanes: building a mechanical picket fence. Chem Sci 2017; 8:6679-6685. [PMID: 30155230 PMCID: PMC6103255 DOI: 10.1039/c7sc03165c] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Accepted: 08/03/2017] [Indexed: 12/02/2022] Open
Abstract
Building on recent progress in the synthesis of functional porphyrins for a range of applications using the Cu-mediated azide-alkyne cycloaddition (CuAAC) reaction, we describe the active template CuAAC synthesis of interlocked triazole functionalised porphyrinoids in excellent yield. By synthesising interlocked analogues of previously studied porphyrin-corrole conjugates, we demonstrate that this approach gives access to rotaxanes in which the detailed electronic properties of the axle component are unchanged but whose steric properties are transformed by the mechanical "picket fence" provided by the threaded rings. Our results suggest that interlocked functionalised porphyrins, readily available using the AT-CuAAC approach, are sterically hindered scaffolds for the development of new catalysts and materials.
Collapse
Affiliation(s)
- T H Ngo
- International Center for Young Scientists (ICYS) , WPI Center for Materials Nanoarchitectonics (WPI-MANA) , National Institute for Materials Science , Namiki 1-1 , Tsukuba , Ibaraki 305-0044 , Japan .
- WPI Center for Materials Nanoarchitectonics , National Institute for Materials Science , Namiki 1-1 , Tsukuba , Ibaraki 305-0044 , Japan
| | - J Labuta
- WPI Center for Materials Nanoarchitectonics , National Institute for Materials Science , Namiki 1-1 , Tsukuba , Ibaraki 305-0044 , Japan
- International Center for Young Scientists (ICYS-SENGEN) , National Institute for Materials Science , Sengen 1-2-1 , Tsukuba , Ibaraki 305-0047 , Japan
| | - G N Lim
- Department of Chemistry , University of North Texas , 1155 Union Circle , 305070 , Denton , TX 76203 , USA .
| | - W A Webre
- Department of Chemistry , University of North Texas , 1155 Union Circle , 305070 , Denton , TX 76203 , USA .
| | - F D'Souza
- Department of Chemistry , University of North Texas , 1155 Union Circle , 305070 , Denton , TX 76203 , USA .
| | - P A Karr
- Department of Physical Sciences and Mathematics , Wayne State College , 111 Main Street , Wayne , Nebraska 68787 , USA
| | - J E M Lewis
- Department of Chemistry , University of Southampton , University Road , Highfield , Southampton , SO17 1BJ , UK .
| | - J P Hill
- WPI Center for Materials Nanoarchitectonics , National Institute for Materials Science , Namiki 1-1 , Tsukuba , Ibaraki 305-0044 , Japan
| | - K Ariga
- WPI Center for Materials Nanoarchitectonics , National Institute for Materials Science , Namiki 1-1 , Tsukuba , Ibaraki 305-0044 , Japan
| | - S M Goldup
- Department of Chemistry , University of Southampton , University Road , Highfield , Southampton , SO17 1BJ , UK .
| |
Collapse
|
12
|
Tsai SE, Yen WP, Li YT, Hu YT, Tseng CC, Wong FF. Indium(III) Chloride Promoted One-Pot Multicomponent Synthesis of 1,2,4-Triazole Carrying 1,2,4-Triazin-6-ones from Nitrile Imines and N
,N′
-Bis(trimethylsilyl)carbodiimine. ASIAN J ORG CHEM 2017. [DOI: 10.1002/ajoc.201700271] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Shuo-En Tsai
- Ph.D. Program for Biotech Pharmaceutical Industry and School of Pharmacy; China Medical University; No. 91, Hsueh-Shih Rd. Taichung Taiwan 40402 R.O.C
| | - Wan-Ping Yen
- Ph.D. Program for Biotech Pharmaceutical Industry and School of Pharmacy; China Medical University; No. 91, Hsueh-Shih Rd. Taichung Taiwan 40402 R.O.C
| | - Yi-Ting Li
- Master Program for Pharmaceutical Manufacture; China Medical University; No. 91, Hsueh-Shih Rd. Taichung Taiwan 40402 R.O.C
| | - Yu-Tzu Hu
- Master Program for Pharmaceutical Manufacture; China Medical University; No. 91, Hsueh-Shih Rd. Taichung Taiwan 40402 R.O.C
| | - Ching-Chun Tseng
- Master Program for Pharmaceutical Manufacture; China Medical University; No. 91, Hsueh-Shih Rd. Taichung Taiwan 40402 R.O.C
| | - Fung Fuh Wong
- Ph.D. Program for Biotech Pharmaceutical Industry and School of Pharmacy; China Medical University; No. 91, Hsueh-Shih Rd. Taichung Taiwan 40402 R.O.C
| |
Collapse
|
13
|
Hiroto S, Miyake Y, Shinokubo H. Synthesis and Functionalization of Porphyrins through Organometallic Methodologies. Chem Rev 2016; 117:2910-3043. [PMID: 27709907 DOI: 10.1021/acs.chemrev.6b00427] [Citation(s) in RCA: 305] [Impact Index Per Article: 33.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
This review focuses on the postfunctionalization of porphyrins and related compounds through catalytic and stoichiometric organometallic methodologies. The employment of organometallic reactions has become common in porphyrin synthesis. Palladium-catalyzed cross-coupling reactions are now standard techniques for constructing carbon-carbon bonds in porphyrin synthesis. In addition, iridium- or palladium-catalyzed direct C-H functionalization of porphyrins is emerging as an efficient way to install various substituents onto porphyrins. Furthermore, the copper-mediated Huisgen cycloaddition reaction has become a frequent strategy to incorporate porphyrin units into functional molecules. The use of these organometallic techniques, along with the traditional porphyrin synthesis, now allows chemists to construct a wide range of highly elaborated and complex porphyrin architectures.
Collapse
Affiliation(s)
- Satoru Hiroto
- Department of Applied Chemistry, Graduate School of Engineering, Nagoya University , Nagoya 464-8603, Japan
| | - Yoshihiro Miyake
- Department of Applied Chemistry, Graduate School of Engineering, Nagoya University , Nagoya 464-8603, Japan
| | - Hiroshi Shinokubo
- Department of Applied Chemistry, Graduate School of Engineering, Nagoya University , Nagoya 464-8603, Japan
| |
Collapse
|
14
|
Tiwari VK, Mishra BB, Mishra KB, Mishra N, Singh AS, Chen X. Cu-Catalyzed Click Reaction in Carbohydrate Chemistry. Chem Rev 2016; 116:3086-240. [PMID: 26796328 DOI: 10.1021/acs.chemrev.5b00408] [Citation(s) in RCA: 560] [Impact Index Per Article: 62.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Cu(I)-catalyzed azide-alkyne 1,3-dipolar cycloaddition (CuAAC), popularly known as the "click reaction", serves as the most potent and highly dependable tool for facile construction of simple to complex architectures at the molecular level. Click-knitted threads of two exclusively different molecular entities have created some really interesting structures for more than 15 years with a broad spectrum of applicability, including in the fascinating fields of synthetic chemistry, medicinal science, biochemistry, pharmacology, material science, and catalysis. The unique properties of the carbohydrate moiety and the advantages of highly chemo- and regioselective click chemistry, such as mild reaction conditions, efficient performance with a wide range of solvents, and compatibility with different functionalities, together produce miraculous neoglycoconjugates and neoglycopolymers with various synthetic, biological, and pharmaceutical applications. In this review we highlight the successful advancement of Cu(I)-catalyzed click chemistry in glycoscience and its applications as well as future scope in different streams of applied sciences.
Collapse
Affiliation(s)
- Vinod K Tiwari
- Department of Chemistry, Centre of Advanced Study, Institute of Science, Banaras Hindu University , Varanasi, Uttar Pradesh-221005, India
| | - Bhuwan B Mishra
- Department of Chemistry, Centre of Advanced Study, Institute of Science, Banaras Hindu University , Varanasi, Uttar Pradesh-221005, India
| | - Kunj B Mishra
- Department of Chemistry, Centre of Advanced Study, Institute of Science, Banaras Hindu University , Varanasi, Uttar Pradesh-221005, India
| | - Nidhi Mishra
- Department of Chemistry, Centre of Advanced Study, Institute of Science, Banaras Hindu University , Varanasi, Uttar Pradesh-221005, India
| | - Anoop S Singh
- Department of Chemistry, Centre of Advanced Study, Institute of Science, Banaras Hindu University , Varanasi, Uttar Pradesh-221005, India
| | - Xi Chen
- Department of Chemistry, One Shields Avenue, University of California-Davis , Davis, California 95616, United States
| |
Collapse
|
15
|
Ladomenou K, Nikolaou V, Charalambidis G, Coutsolelos AG. “Click”-reaction: An alternative tool for new architectures of porphyrin based derivatives. Coord Chem Rev 2016. [DOI: 10.1016/j.ccr.2015.06.002] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
16
|
Singh S, Aggarwal A, Bhupathiraju NVSDK, Arianna G, Tiwari K, Drain CM. Glycosylated Porphyrins, Phthalocyanines, and Other Porphyrinoids for Diagnostics and Therapeutics. Chem Rev 2015; 115:10261-306. [PMID: 26317756 PMCID: PMC6011754 DOI: 10.1021/acs.chemrev.5b00244] [Citation(s) in RCA: 372] [Impact Index Per Article: 37.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Sunaina Singh
- Department of Natural Sciences, LaGuardia Community College of the City University of New York, Long Island City, New York 11101, United States
| | - Amit Aggarwal
- Department of Natural Sciences, LaGuardia Community College of the City University of New York, Long Island City, New York 11101, United States
| | - N. V. S. Dinesh K. Bhupathiraju
- Department of Chemistry and Biochemistry, Hunter College of the City University of New York, New York, New York 10065, United States
| | - Gianluca Arianna
- Department of Chemistry and Biochemistry, Hunter College of the City University of New York, New York, New York 10065, United States
| | - Kirran Tiwari
- Department of Chemistry and Biochemistry, Hunter College of the City University of New York, New York, New York 10065, United States
| | - Charles Michael Drain
- Department of Chemistry and Biochemistry, Hunter College of the City University of New York, New York, New York 10065, United States
- The Rockefeller University, New York, New York 10065, United States
| |
Collapse
|
17
|
Moylan C, Sweed AM, Shaker YM, Scanlan EM, Senge MO. Lead structures for applications in photodynamic therapy 7. Efficient synthesis of amphiphilic glycosylated lipid porphyrin derivatives: refining linker conjugation for potential PDT applications. Tetrahedron 2015. [DOI: 10.1016/j.tet.2015.04.097] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|