1
|
Li J, Sheng H, Wang Y, Lai Z, Wang Y, Cui S. Scaffold Hybrid of the Natural Product Tanshinone I with Piperidine for the Discovery of a Potent NLRP3 Inflammasome Inhibitor. J Med Chem 2023; 66:2946-2963. [PMID: 36786612 DOI: 10.1021/acs.jmedchem.2c01967] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
Abstract
Natural products provide inspiration and have proven to be the most valuable source for drug discovery. Herein, we report a scaffold hybrid strategy of Tanshinone I for the discovery of NLRP3 inflammasome inhibitors. 36 compounds were designed and synthesized, and the cheminformatic analyses showed that these compounds occupy a unique chemical space. The biological evaluation identified compounds 5j, 12a, and 12d as NLRP3 inflammasome inhibitors with significant potency, selectivity, and drug-likeness. Mechanistic studies revealed that these Tanshinone I derivatives could inhibit the degradation of the protein NLRP3 and block the oligomerization of NLRP3-induced apoptosis-associated speck-like proteins, thus inhibiting NLRP3 inflammasome activation. In addition, the water solubility, in vitro metabolic stability, and oral bioavailability of these compounds were also greatly improved compared to Tanshinone I. Therefore, this protocol provides a new structural evolution of Tanshinone I and a new class of potent NLRP3 inflammasome inhibitors.
Collapse
Affiliation(s)
- Jiaming Li
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Hongda Sheng
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yingchao Wang
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Zhencheng Lai
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yi Wang
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Sunliang Cui
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
2
|
Huang X, Jin L, Deng H, Wu D, Shen QK, Quan ZS, Zhang CH, Guo HY. Research and Development of Natural Product Tanshinone I: Pharmacology, Total Synthesis, and Structure Modifications. Front Pharmacol 2022; 13:920411. [PMID: 35903340 PMCID: PMC9315943 DOI: 10.3389/fphar.2022.920411] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 06/08/2022] [Indexed: 11/13/2022] Open
Abstract
Salvia miltiorrhiza (S. miltiorrhiza), which has been used for thousands of years to treat cardiovascular diseases, is a well-known Chinese medicinal plant. The fat-soluble tanshinones in S. miltiorrhiza are important biologically active ingredients including tanshinone I, tanshinone IIA, dihydrotanshinone, and cryptotanshinone. Tanshinone I, a natural diterpenoid quinone compound widely used in traditional Chinese medicine, has a wide range of biological effects including anti-cancer, antioxidant, neuroprotective, and anti-inflammatory activities. To further improve its potency, water solubility, and bioavailability, tanshinone I can be used as a platform for drug discovery to generate high-quality drug candidates with unique targets and enhanced drug properties. Numerous derivatives of tanshinone I have been developed and have contributed to major advances in the identification of new drugs to treat human cancers and other diseases and in the study of related molecular mechanisms. This review focuses on the structural modification, total synthesis, and pharmacology of tanshinone I. We hope that this review will help understanding the research progress in this field and provide constructive suggestions for further research on tanshinone I.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Hong-Yan Guo
- *Correspondence: Chang-hao Zhang, ; Hong-Yan Guo,
| |
Collapse
|
3
|
Huang X, Deng H, Shen QK, Quan ZS. Tanshinone IIA: Pharmacology, total synthesis, and progress in structure-modifications. Curr Med Chem 2021; 29:1959-1989. [PMID: 34749607 DOI: 10.2174/0929867328666211108110025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 08/02/2021] [Accepted: 08/04/2021] [Indexed: 11/22/2022]
Abstract
Tanshinone IIA, a major bioactive constituent of Danshen, a Chinese herbal medicine, has gained extensive exploration owing to its unique structural features and multiple promising biological activities. This review focuses on the pharmacology, total synthesis, and structural modifications of tanshinone IIA. We hope this review will contribute to a better understanding of the progress in the field and provide constructive suggestions for further study of tanshinone IIA.
Collapse
Affiliation(s)
- Xing Huang
- Key Laboratory of Natural Medicines of the Changbai Mountain, Affifiliated Ministry of Education, College of Pharmacy, Yanbian University, Yanji, Jilin, 133002. China
| | - Hao Deng
- Key Laboratory of Natural Medicines of the Changbai Mountain, Affifiliated Ministry of Education, College of Pharmacy, Yanbian University, Yanji, Jilin, 133002. China
| | - Qing-Kun Shen
- Key Laboratory of Natural Medicines of the Changbai Mountain, Affifiliated Ministry of Education, College of Pharmacy, Yanbian University, Yanji, Jilin, 133002. China
| | - Zhe-Shan Quan
- Key Laboratory of Natural Medicines of the Changbai Mountain, Affifiliated Ministry of Education, College of Pharmacy, Yanbian University, Yanji, Jilin, 133002. China
| |
Collapse
|
4
|
Estolano-Cobián A, Alonso MM, Díaz-Rubio L, Ponce CN, Córdova-Guerrero I, Marrero JG. Tanshinones and their Derivatives: Heterocyclic Ring-Fused Diterpenes of Biological Interest. Mini Rev Med Chem 2021; 21:171-185. [PMID: 32348220 DOI: 10.2174/1389557520666200429103225] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 01/06/2020] [Accepted: 02/03/2020] [Indexed: 11/22/2022]
Abstract
The available scientific literature regarding tanshinones is very abundant, and after its review, it is noticeable that most of the articles focus on the properties of tanshinone I, cryptotanshinone, tanshinone IIA, sodium tanshinone IIA sulfonate and the dried root extract of Salvia miltiorrhiza (Tan- Shen). However, although these products have demonstrated important biological properties in both in vitro and in vivo models, their poor solubility and bioavailability have limited their clinical applications. For these reasons, many studies have focused on the search for new pharmaceutical formulations for tanshinones, as well as the synthesis of new derivatives that improve their biological properties. To provide new insights into the critical path ahead, we systemically reviewed the most recent advances (reported since 2015) on tanshinones in scientific databases (PubMed, Web of Science, Medline, Scopus, and Clinical Trials). With a broader perspective, we offer an update on the last five years of new research on these quinones, focusing on their synthesis, biological activity on noncommunicable diseases and drug delivery systems, to support future research on its clinical applications.
Collapse
Affiliation(s)
- Arturo Estolano-Cobián
- Facultad de Ciencias Quiımicas e Ing, Universidad Autonoma de Baja California, Clz. Universidad 14418, Parque Industrial Internacional, Tijuana, B. C. CP 22390, Mexico
| | - Mariana Macías Alonso
- Instituto Politecnico Nacional, UPIIG, Av. Mineral de Valenciana, No. 200, Col. Fracc, Industrial Puerto Interior, C.P. 36275 Silao de la Victoria, Guanajuato, Mexico
| | - Laura Díaz-Rubio
- Facultad de Ciencias Quiımicas e Ing, Universidad Autonoma de Baja California, Clz. Universidad 14418, Parque Industrial Internacional, Tijuana, B. C. CP 22390, Mexico
| | - Cecilia Naredo Ponce
- Instituto Politecnico Nacional, UPIIG, Av. Mineral de Valenciana, No. 200, Col. Fracc, Industrial Puerto Interior, C.P. 36275 Silao de la Victoria, Guanajuato, Mexico
| | - Iván Córdova-Guerrero
- Facultad de Ciencias Quiımicas e Ing, Universidad Autonoma de Baja California, Clz. Universidad 14418, Parque Industrial Internacional, Tijuana, B. C. CP 22390, Mexico
| | - Joaquín G Marrero
- Instituto Politecnico Nacional, UPIIG, Av. Mineral de Valenciana, No. 200, Col. Fracc, Industrial Puerto Interior, C.P. 36275 Silao de la Victoria, Guanajuato, Mexico
| |
Collapse
|
5
|
Lai Z, He J, Zhou C, Zhao H, Cui S. Tanshinones: An Update in the Medicinal Chemistry in Recent 5 Years. Curr Med Chem 2021; 28:2807-2827. [PMID: 32436817 DOI: 10.2174/0929867327666200521124850] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 04/02/2020] [Accepted: 04/04/2020] [Indexed: 11/22/2022]
Abstract
Tanshinones are an important type of natural products isolated from Salvia miltiorrhiza Bunge with various bioactivities. Tanshinone IIa, cryptotanshinone and tanshinone I are three kinds of tanshinones which have been widely investigated. Particularly, sodium tanshinone IIa sulfonate is a water-soluble derivative of tanshinone IIa and it is used in clinical in China for treating cardiovascular diseases. In recent years, there are increasing interests in the investigation of tanshinones derivatives in various diseases. This article presents a review of the anti-atherosclerotic effects, cardioprotective effects, anticancer activities, antibacterial activities and antiviral activities of tanshinones and structural modification work in recent years.
Collapse
Affiliation(s)
- Zhencheng Lai
- Institute of Drug Discovery and Design, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Jixiao He
- Institute of Drug Discovery and Design, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Changxin Zhou
- Institute of Modern Chinese Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Huajun Zhao
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Sunliang Cui
- Institute of Drug Discovery and Design, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
6
|
Chernyshev VM, Khazipov OV, Eremin DB, Denisova EA, Ananikov VP. Formation and stabilization of nanosized Pd particles in catalytic systems: Ionic nitrogen compounds as catalytic promoters and stabilizers of nanoparticles. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.213860] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
7
|
Huang H, Li H, Cordier M, Soulé J, Doucet H. Pd‐Catalyzed Direct Arylations of Heteroarenes with Polyfluoroalkoxy‐Substituted Bromobenzenes. European J Org Chem 2020. [DOI: 10.1002/ejoc.202001028] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
| | - Haoran Li
- CNRS, ISCR‐UMR 6226 Univ Rennes 35000 Rennes France
| | | | | | - Henri Doucet
- CNRS, ISCR‐UMR 6226 Univ Rennes 35000 Rennes France
| |
Collapse
|
8
|
Zhao H, Sun P, Guo W, Wang Y, Zhang A, Meng L, Ding C. Discovery of Indoleamine 2,3-Dioxygenase 1 (IDO-1) Inhibitors Based on Ortho-Naphthaquinone-Containing Natural Product. Molecules 2019; 24:molecules24061059. [PMID: 30889860 PMCID: PMC6471201 DOI: 10.3390/molecules24061059] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 03/12/2019] [Accepted: 03/15/2019] [Indexed: 01/24/2023] Open
Abstract
There is great interest in developing small molecules agents capable of reversing tumor immune escape to restore the body’s immune system. As an immunosuppressive enzyme, indoleamine 2,3-dioxygenase 1 (IDO-1) is considered a promising target for oncology immunotherapy. Currently, none of IDO-1 inhibitors have been launched for clinical practice yet. Thus, the discovery of new IDO-1 inhibitors is still in great demand. Herein, a series of diverse ortho-naphthaquinone containing natural product derivatives were synthesized as novel IDO-1 inhibitors. Among them, 1-ene-3-ketone-17-hydroxyl derivative 12 exhibited significantly improved enzymatic and cellular inhibitory activity against IDO-1 when compared to initial lead compounds. Besides, the molecular docking study disclosed that the two most potent compounds 11 and 12 have more interactions within the binding pocket of IDO-1 via hydrogen-bonding, which may account for their higher IDO-1 inhibitory activity.
Collapse
Affiliation(s)
- Hongchuan Zhao
- CAS Key Laboratory of Receptor Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.
| | - Pu Sun
- Division of Anti-Tumor Pharmacology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.
- School of Pharmacy, University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Wei Guo
- Division of Anti-Tumor Pharmacology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.
- School of Pharmacy, University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Yi Wang
- Division of Anti-Tumor Pharmacology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.
| | - Ao Zhang
- CAS Key Laboratory of Receptor Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.
- School of Pharmacy, University of Chinese Academy of Sciences, Beijing 100049, China.
- School of Life Scienece and Technology, ShanghaiTech University, Shanghai 20120, China.
| | - Linghua Meng
- Division of Anti-Tumor Pharmacology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.
- School of Pharmacy, University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Chunyong Ding
- CAS Key Laboratory of Receptor Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.
- School of Pharmacy, University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
9
|
Ding C, Tian Q, Li J, Jiao M, Song S, Wang Y, Miao Z, Zhang A. Structural Modification of Natural Product Tanshinone I Leading to Discovery of Novel Nitrogen-Enriched Derivatives with Enhanced Anticancer Profile and Improved Drug-like Properties. J Med Chem 2018; 61:760-776. [DOI: 10.1021/acs.jmedchem.7b01259] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Chunyong Ding
- CAS Key Laboratory of Receptor Research, Synthetic Organic & Medicinal Chemistry Laboratory, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qianting Tian
- State
Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jie Li
- CAS Key Laboratory of Receptor Research, Synthetic Organic & Medicinal Chemistry Laboratory, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- ShanghaiTech University, Shanghai 20120, China
| | - Mingkun Jiao
- CAS Key Laboratory of Receptor Research, Synthetic Organic & Medicinal Chemistry Laboratory, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Shanshan Song
- State
Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Yingqing Wang
- State
Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zehong Miao
- State
Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ao Zhang
- CAS Key Laboratory of Receptor Research, Synthetic Organic & Medicinal Chemistry Laboratory, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- State
Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- ShanghaiTech University, Shanghai 20120, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
10
|
Li MM, Xia F, Li CJ, Xu G, Qin HB. Design, synthesis and cytotoxicity of nitrogen-containing tanshinone derivatives. Tetrahedron Lett 2018. [DOI: 10.1016/j.tetlet.2017.11.046] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
11
|
Wang F, Yang H, Yu S, Xue Y, Fan Z, Liang G, Geng M, Zhang A, Ding C. Total synthesis of (±)-tanshinol B, tanshinone I, and (±)-tanshindiol B and C. Org Biomol Chem 2018; 16:3376-3381. [DOI: 10.1039/c8ob00567b] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
A concise and efficient approach was established for the divergent total synthesis of (±)-tanshinol B, (±)-tanshindiol B, (±)-tanshindiol C, and tanshinone I in 17–50% overall yield over 3–6 steps.
Collapse
Affiliation(s)
- Fan Wang
- Nano Science and Technology Institute
- University of Science and Technology of China
- Suzhou 215123
- China
- CAS Key Laboratory of Receptor Research
| | - Hong Yang
- State key Laboratory of Drug Research
- Shanghai Institute of Materia Medica
- Chinese Academy of Sciences
- Shanghai 201203
- China
| | - Shujuan Yu
- Nano Science and Technology Institute
- University of Science and Technology of China
- Suzhou 215123
- China
- CAS Key Laboratory of Receptor Research
| | - Yu Xue
- CAS Key Laboratory of Receptor Research
- Synthetic Organic & Medicinal Chemistry
- Shanghai Institute of Materia Medica
- Chinese Academy of Sciences
- Shanghai 201203
| | - Zhoulong Fan
- CAS Key Laboratory of Receptor Research
- Synthetic Organic & Medicinal Chemistry
- Shanghai Institute of Materia Medica
- Chinese Academy of Sciences
- Shanghai 201203
| | - Gaolin Liang
- Nano Science and Technology Institute
- University of Science and Technology of China
- Suzhou 215123
- China
| | - Meiyu Geng
- State key Laboratory of Drug Research
- Shanghai Institute of Materia Medica
- Chinese Academy of Sciences
- Shanghai 201203
- China
| | - Ao Zhang
- CAS Key Laboratory of Receptor Research
- Synthetic Organic & Medicinal Chemistry
- Shanghai Institute of Materia Medica
- Chinese Academy of Sciences
- Shanghai 201203
| | - Chunyong Ding
- CAS Key Laboratory of Receptor Research
- Synthetic Organic & Medicinal Chemistry
- Shanghai Institute of Materia Medica
- Chinese Academy of Sciences
- Shanghai 201203
| |
Collapse
|
12
|
Affiliation(s)
- Jie Li
- ShanghaiTech University, Shanghai 201210, China
| | - Yu Xue
- Department
of Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, China
| | - Zhoulong Fan
- CAS
Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- State
key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chunyong Ding
- CAS
Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ao Zhang
- ShanghaiTech University, Shanghai 201210, China
- CAS
Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- State
key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
13
|
He X, Chen X, Lin S, Mo X, Zhou P, Zhang Z, Lu Y, Yang Y, Gu H, Shang Z, Lou Y, Wu J. Diversity-Oriented Synthesis of Natural-Product-like Libraries Containing a 3-Methylbenzofuran Moiety for the Discovery of New Chemical Elicitors. ChemistryOpen 2017; 6:102-111. [PMID: 28168155 PMCID: PMC5288756 DOI: 10.1002/open.201600118] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Indexed: 12/26/2022] Open
Abstract
Natural products are a major source of biological molecules. The 3-methylfuran scaffold is found in a variety of plant secondary metabolite chemical elicitors that confer host-plant resistance against insect pests. Herein, the diversity-oriented synthesis of a natural-product-like library is reported, in which the 3-methylfuran core is fused in an angular attachment to six common natural product scaffolds-coumarin, chalcone, flavone, flavonol, isoflavone and isoquinolinone. The structural diversity of this library is assessed computationally using cheminformatic analysis. Phenotypic high-throughput screening of β-glucuronidase activity uncovers several hits. Further in vivo screening confirms that these hits can induce resistance in rice to nymphs of the brown planthopper Nilaparvata lugens. This work validates the combination of diversity-oriented synthesis and high-throughput screening of β-glucuronidase activity as a strategy for discovering new chemical elicitors.
Collapse
Affiliation(s)
- Xingrui He
- Department of ChemistryZhejiang UniversityHangzhou310027P. R. China
| | - Xia Chen
- State Key Laboratory of Rice BiologyInstitute of Insect ScienceZhejiang UniversityHangzhou310058P. R. China
| | - Songbo Lin
- Department of ChemistryZhejiang UniversityHangzhou310027P. R. China
| | - Xiaochang Mo
- State Key Laboratory of Rice BiologyInstitute of Insect ScienceZhejiang UniversityHangzhou310058P. R. China
| | - Pengyong Zhou
- State Key Laboratory of Rice BiologyInstitute of Insect ScienceZhejiang UniversityHangzhou310058P. R. China
| | - Zhihao Zhang
- Department of ChemistryZhejiang UniversityHangzhou310027P. R. China
| | - Yaoyao Lu
- School of Biological and Chemical EngineeringZhejiang University of Science and TechnologyHangzhou310023P. R. China
| | - Yu Yang
- School of Biological and Chemical EngineeringZhejiang University of Science and TechnologyHangzhou310023P. R. China
| | - Haining Gu
- Department of ChemistryZhejiang UniversityHangzhou310027P. R. China
| | - Zhicai Shang
- Department of ChemistryZhejiang UniversityHangzhou310027P. R. China
| | - Yonggen Lou
- State Key Laboratory of Rice BiologyInstitute of Insect ScienceZhejiang UniversityHangzhou310058P. R. China
| | - Jun Wu
- Department of ChemistryZhejiang UniversityHangzhou310027P. R. China
| |
Collapse
|
14
|
Ding C, Li J, Jiao M, Zhang A. Catalyst-Free sp 3 C-H Acyloxylation: Regioselective Synthesis of 1-Acyloxy Derivatives of the Natural Product Tanshinone IIA. JOURNAL OF NATURAL PRODUCTS 2016; 79:2514-2520. [PMID: 27672695 DOI: 10.1021/acs.jnatprod.6b00370] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Tanshinone IIA is a valuable bioactive natural product isolated from the well-known Chinese herb Danshen. Structural manipulation of the A-ring of tanshinone IIA is rather limited. In this study, a substrate tautomerization-induced catalyst-free benzylic sp3 C-H acyloxylation approach is reported that allows the direct introduction of various acyloxy groups at the A-ring benzylic methylene of various tanshinone IIA substrates, thus avoiding the use of expensive transition metal catalysts and the production of harmful byproducts. This approach features a unique acid-induced reversible enolization/oxa-conjugate addition process followed by oxidation to exclusively give a series of diverse 1-acyloxylated derivatives under simple conditions in a regioselective manner. Compared with the literature procedures, this protocol demonstrates a higher efficiency, a more robust functional-group tolerance, atom economy, and lower cost.
Collapse
Affiliation(s)
- Chunyong Ding
- CAS Key Laboratory of Receptor Research, Synthetic Organic & Medicinal Chemistry Laboratory, Shanghai Institute of Materia Medica, Chinese Academy of Sciences , Shanghai 201203, People's Republic of China
- University of Chinese Academy of Sciences , Beijing 100049, People's Republic of China
| | - Jie Li
- CAS Key Laboratory of Receptor Research, Synthetic Organic & Medicinal Chemistry Laboratory, Shanghai Institute of Materia Medica, Chinese Academy of Sciences , Shanghai 201203, People's Republic of China
- ShanghaiTech University , Shanghai 20120, People's Republic of China
| | - Mingkun Jiao
- CAS Key Laboratory of Receptor Research, Synthetic Organic & Medicinal Chemistry Laboratory, Shanghai Institute of Materia Medica, Chinese Academy of Sciences , Shanghai 201203, People's Republic of China
- University of Chinese Academy of Sciences , Beijing 100049, People's Republic of China
| | - Ao Zhang
- CAS Key Laboratory of Receptor Research, Synthetic Organic & Medicinal Chemistry Laboratory, Shanghai Institute of Materia Medica, Chinese Academy of Sciences , Shanghai 201203, People's Republic of China
- ShanghaiTech University , Shanghai 20120, People's Republic of China
- University of Chinese Academy of Sciences , Beijing 100049, People's Republic of China
| |
Collapse
|
15
|
Badenock JC, Gribble GW. Metal-Catalyzed Coupling with Heterocycles. ADVANCES IN HETEROCYCLIC CHEMISTRY 2016. [DOI: 10.1016/bs.aihch.2016.04.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|