1
|
Ramírez D, Mejia-Gutierrez M, Insuasty B, Rinné S, Kiper AK, Platzk M, Müller T, Decher N, Quiroga J, De-la-Torre P, González W. 5-(Indol-2-yl)pyrazolo[3,4- b]pyridines as a New Family of TASK-3 Channel Blockers: A Pharmacophore-Based Regioselective Synthesis. Molecules 2021; 26:molecules26133897. [PMID: 34202296 PMCID: PMC8271858 DOI: 10.3390/molecules26133897] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 06/16/2021] [Accepted: 06/18/2021] [Indexed: 11/16/2022] Open
Abstract
TASK channels belong to the two-pore-domain potassium (K2P) channels subfamily. These channels modulate cellular excitability, input resistance, and response to synaptic stimulation. TASK-channel inhibition led to membrane depolarization. TASK-3 is expressed in different cancer cell types and neurons. Thus, the discovery of novel TASK-3 inhibitors makes these bioactive compounds very appealing to explore new cancer and neurological therapies. TASK-3 channel blockers are very limited to date, and only a few heterofused compounds have been reported in the literature. In this article, we combined a pharmacophore hypothesis with molecular docking to address for the first time the rational design, synthesis, and evaluation of 5-(indol-2-yl)pyrazolo[3,4-b]pyridines as a novel family of human TASK-3 channel blockers. Representative compounds of the synthesized library were assessed against TASK-3 using Fluorometric imaging plate reader-Membrane Potential assay (FMP). Inhibitory properties were validated using two-electrode voltage-clamp (TEVC) methods. We identified one active hit compound (MM-3b) with our systematic pipeline, exhibiting an IC50 ≈ 30 μM. Molecular docking models suggest that compound MM-3b binds to TASK-3 at the bottom of the selectivity filter in the central cavity, similar to other described TASK-3 blockers such as A1899 and PK-THPP. Our in silico and experimental studies provide a new tool to predict and design novel TASK-3 channel blockers.
Collapse
Affiliation(s)
- David Ramírez
- Instituto de Ciencias Biomédicas, Universidad Autónoma de Chile, Llano Subercaseaux 2801-Piso 5, Santiago 8900000, Chile
- Correspondence: (D.R.); (P.D.-l.-T.); (W.G.)
| | - Melissa Mejia-Gutierrez
- Heterocyclic Compounds Research Group, Department of Chemistry, Universidad del Valle, A.A, Cali 760031, Colombia; (M.M.-G.); (B.I.); (J.Q.)
| | - Braulio Insuasty
- Heterocyclic Compounds Research Group, Department of Chemistry, Universidad del Valle, A.A, Cali 760031, Colombia; (M.M.-G.); (B.I.); (J.Q.)
| | - Susanne Rinné
- Institute for Physiology and Pathophysiology, Vegetative Physiology and Center for Mind, Brain and Behavior (CMBB), Philipps-University of Marburg, Deutschhausstraße 2, 35037 Marburg, Germany; (S.R.); (A.K.K.); (N.D.)
| | - Aytug K. Kiper
- Institute for Physiology and Pathophysiology, Vegetative Physiology and Center for Mind, Brain and Behavior (CMBB), Philipps-University of Marburg, Deutschhausstraße 2, 35037 Marburg, Germany; (S.R.); (A.K.K.); (N.D.)
| | - Magdalena Platzk
- Joint Pulmonary Drug Discovery Lab Bayer-MGH, Boston, MA 02114, USA;
| | - Thomas Müller
- Bayer AG, Research & Development, Pharmaceuticals, D-42096 Wuppertal, Germany;
| | - Niels Decher
- Institute for Physiology and Pathophysiology, Vegetative Physiology and Center for Mind, Brain and Behavior (CMBB), Philipps-University of Marburg, Deutschhausstraße 2, 35037 Marburg, Germany; (S.R.); (A.K.K.); (N.D.)
| | - Jairo Quiroga
- Heterocyclic Compounds Research Group, Department of Chemistry, Universidad del Valle, A.A, Cali 760031, Colombia; (M.M.-G.); (B.I.); (J.Q.)
| | - Pedro De-la-Torre
- Department of Otolaryngology, Harvard Medical School and Massachusetts Eye and Ear, 243 Charles St, Boston, MA 02114, USA
- Caribe Therapeutics, Vía 40 No. 69-111, Oficina 804 A, Barranquilla 080002, Colombia
- Correspondence: (D.R.); (P.D.-l.-T.); (W.G.)
| | - Wendy González
- Centro de Bioinformática, Simulación y Modelado (CBSM), Facultad de Ingeniería, Universidad de Talca, Poniente No. 1141, Talca 3460000, Chile
- Millennium Nucleus of Ion Channels-Associated Diseases (MiNICAD), Universidad de Talca, Talca 3460000, Chile
- Correspondence: (D.R.); (P.D.-l.-T.); (W.G.)
| |
Collapse
|
2
|
Abstract
This review describes the non-exhaustive scenery of the synthesis of various
biologically interesting pyrimidine annulated five-membered heterocyclic ring systems
that have been appeared in the literature during the last two decades. During this period,
different synthetic routes and various methodologies have been developed for the functionalization
of pyrimidine ring towards the construction of five-membered heterocyclic
rings. The aim of this review is to give an overview of the assorted methodologies that
have been reported about the chemistry of construction of pyrimidines annulated nitrogen,
oxygen and sulphur containing five-membered heterocycles.
Collapse
Affiliation(s)
- Pradip Kumar Maji
- Department of Chemistry, Bidhan Chandra College, Asansol, Paschim Bardhaman, 713304, Rishra, West Bangal, India
| |
Collapse
|
3
|
A Highly Efficient Synthesis of Pyrrolo[1,2‐
a
]pyrimidine Derivatives Containing 1,3‐Indandione Skeleton. ChemistrySelect 2019. [DOI: 10.1002/slct.201901263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
4
|
Acosta P, Insuasty B, Abonia R, Gutierrez M, Quiroga J. Synthesis of novel 7-aryl and 7-spiropyrazolo[4′,3′:5,6]pyrido[2,3-d]pyrimidine derivatives and their study as AChE inhibitors. Mol Divers 2017; 21:943-955. [DOI: 10.1007/s11030-017-9774-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Accepted: 07/24/2017] [Indexed: 10/19/2022]
|
5
|
Fekete B, Palkó M, Haukka M, Fülöp F. Synthesis of Pyrrolo[1,2-a]pyrimidine Enantiomers via Domino Ring-Closure followed by Retro Diels-Alder Protocol. Molecules 2017; 22:molecules22040613. [PMID: 28406463 PMCID: PMC6154686 DOI: 10.3390/molecules22040613] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Revised: 04/04/2017] [Accepted: 04/06/2017] [Indexed: 01/14/2023] Open
Abstract
From 2-aminonorbornene hydroxamic acids, a simple and efficient method for the preparation of pyrrolo[1,2-a]pyrimidine enantiomers is reported. The synthesis is based on domino ring-closure followed by microwave-induced retro Diels-Alder (RDA) protocols, where the chirality of the desired products is transferred from norbornene derivatives. The stereochemistry of the synthesized compounds was proven by X-ray crystallography. The absolute configuration of the product is determined by the configuration of the starting amino hydroxamic acid.
Collapse
Affiliation(s)
- Beáta Fekete
- Institute of Pharmaceutical Chemistry, University of Szeged, Eötvös utca 6, Szeged H-6720, Hungary.
| | - Márta Palkó
- Institute of Pharmaceutical Chemistry, University of Szeged, Eötvös utca 6, Szeged H-6720, Hungary.
| | - Matti Haukka
- Department of Chemistry, University of Jyväskylä, FIN-40014 Turku, Finland.
| | - Ferenc Fülöp
- Institute of Pharmaceutical Chemistry, University of Szeged, Eötvös utca 6, Szeged H-6720, Hungary.
- MTA-SZTE Stereochemistry Research Group, Hungarian Academy of Sciences, Eötvös utca 6, Szeged H-6720, Hungary.
| |
Collapse
|
6
|
Synthesis and study of the electronic properties of pyrazolo[1,5-c]pyrrolo[1,2-a]quinazoline and pyrazolo[1,5-c]pyrido[1,2-a]quinazoline derivatives. MONATSHEFTE FUR CHEMIE 2016. [DOI: 10.1007/s00706-016-1783-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
7
|
Xun Z, Feng X, Wang J, Shi D, Huang Z. Multicomponent Strategy for the Preparation of Pyrrolo[1,2-a]pyrimidine Derivatives under Catalyst-Free and Microwave Irradiation Conditions. CHINESE J CHEM 2016. [DOI: 10.1002/cjoc.201600142] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|