1
|
Chandra P, Choudhary N, Lahiri GK, Maiti D, Mobin SM. Copper Mediated Chemo‐ and Stereoselective Cyanation Reactions. ASIAN J ORG CHEM 2021. [DOI: 10.1002/ajoc.202100182] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Prakash Chandra
- School of Technology Pandit Deendayal Petroleum University Gandhinagar Gujarat 382007 India
| | - Neha Choudhary
- Department of Chemistry Indian Institute of Technology, Indore Khandwa Road Indore Simrol 453552 India
| | - Goutam K. Lahiri
- Department of Chemistry Indian Institute of Technology Bombay Mumbai Powai 400076 India
| | - Debabrata Maiti
- Department of Chemistry Indian Institute of Technology Bombay Mumbai Powai 400076 India
| | - Shaikh M. Mobin
- Department of Chemistry Indian Institute of Technology, Indore Khandwa Road Indore Simrol 453552 India
- Department of Metallurgy Engineering and Materials Science (MEMS) Indian Institute of Technology Indore Khandwa Road Indore Simrol 453552 India
- Department of Biosciences and Bio-Medical Engineering (BSBE) Indian Institute of Technology, Indore Khandwa Road Indore Simrol 453552 India
| |
Collapse
|
2
|
Ansari TN, Sharma S, Bora PP, Ogulu D, Parmar S, Gallou F, Kozlowski PM, Handa S. Photoassisted Charge Transfer Between DMF and Substrate: Facile and Selective N,N-Dimethylamination of Fluoroarenes. CHEMSUSCHEM 2021; 14:2704-2709. [PMID: 33974355 DOI: 10.1002/cssc.202100761] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 05/10/2021] [Indexed: 06/12/2023]
Abstract
A reversible Van der Waals complex formation between the electron-deficient fluorinated aromatic ring and N,N-dimethylformamide (DMF) molecules followed by light irradiation resulted in charge transfer (CT) process. The complex was stabilized by ammonium formate and further decomposed to form the C-N bond. Control experiments revealed that the simultaneous SN Ar pathway also contributes to product formation. This methodology is mild, metal-free, and effective for the amination of a variety of substrates. The reproducibility of this methodology was also verified on gram-scale reactions. The CT states were supported by control UV/Vis spectroscopy and computational studies.
Collapse
Affiliation(s)
- Tharique N Ansari
- Department of Chemistry, University of Louisville, 40292, Louisville, Kentucky, United States
| | - Sudripet Sharma
- Department of Chemistry, University of Louisville, 40292, Louisville, Kentucky, United States
| | - Pranjal P Bora
- Department of Chemistry, University of Louisville, 40292, Louisville, Kentucky, United States
| | - Deborah Ogulu
- Department of Chemistry, University of Louisville, 40292, Louisville, Kentucky, United States
| | - Saurav Parmar
- Department of Chemistry, University of Louisville, 40292, Louisville, Kentucky, United States
| | | | - Pawel M Kozlowski
- Department of Chemistry, University of Louisville, 40292, Louisville, Kentucky, United States
| | - Sachin Handa
- Department of Chemistry, University of Louisville, 40292, Louisville, Kentucky, United States
| |
Collapse
|
3
|
Wang FF, Liu YY, Pei WY, Ma JF. Three Resorcin[4]arene-Based Two-Dimensional Zn(II) Supramolecular Isomers Synthesized via a Structure-Directing Strategy for Knoevenagel Condensation. Inorg Chem 2021; 60:7329-7336. [PMID: 33926185 DOI: 10.1021/acs.inorgchem.1c00497] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Herein, in the presence of three structure-directing agents (SDAs), a family of imidazole-functionalized resorcin[4]arene-based coordination polymers (CPs), [Zn(TIC4R)(HCOO)]·HCOO·0.5DMF·1.5H2O (1), [Zn(TIC4R)(CN)]·HCOO·DMF·2.5H2O (2), and [Zn(TIC4R)(H2O)]·2HCOO·2H2O (3), were assembled under solvothermal conditions [TIC4R = tetra(imidazole) resorcin[4]arene]. 1 exhibits a double-layer structure with rectangle windows, and 2 and 3 display monolayer structures. The layers of CPs 2 and 3 are slides with different offsets along the a-axis. In addition, three CPs were used as catalysts to catalyze Knoevenagel condensations. Strikingly, all CPs exhibit remarkable catalytic performance for several substrates. To the best of our knowledge, this is the first time that a small organic acid as SDA was used in the syntheses of resorcin[4]arene-based supramolecular isomers.
Collapse
Affiliation(s)
- Fei-Fei Wang
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry, Department of Chemistry, Northeast Normal University, Changchun 130024, People's Republic of China
| | - Ying-Ying Liu
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry, Department of Chemistry, Northeast Normal University, Changchun 130024, People's Republic of China
| | - Wen-Yuan Pei
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry, Department of Chemistry, Northeast Normal University, Changchun 130024, People's Republic of China
| | - Jian-Fang Ma
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry, Department of Chemistry, Northeast Normal University, Changchun 130024, People's Republic of China
| |
Collapse
|
4
|
Xiao J, Guo F, Li Y, Li F, Li Q, Tang ZL. Iodine Promoted Conversion of Esters to Nitriles and Ketones under Metal-Free Conditions. J Org Chem 2021; 86:2028-2035. [PMID: 33397102 DOI: 10.1021/acs.joc.0c02794] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We report a novel strategy to prepare valuable nitriles and ketones through the conversion of esters under metal-free conditions. By using the I2/PCl3 system, various substrates including aliphatic and aromatic esters could react with acetonitrile and arenes to afford the desired products in good to excellent yields. This method is compatible with a number of functional groups and provides a simple and practical approach for the synthesis of nitrile compounds and aryl ketones.
Collapse
Affiliation(s)
- Jing Xiao
- Key Laboratory of Theoretical Organic Chemistry and Functional Molecule of Ministry of Education, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan 411201, China
| | - Fengzhe Guo
- Key Laboratory of Theoretical Organic Chemistry and Functional Molecule of Ministry of Education, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan 411201, China
| | - Yinfeng Li
- Key Laboratory of Theoretical Organic Chemistry and Functional Molecule of Ministry of Education, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan 411201, China
| | - Fangshao Li
- Key Laboratory of Theoretical Organic Chemistry and Functional Molecule of Ministry of Education, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan 411201, China
| | - Qiang Li
- Institution of Functional Organic Molecules and Materials, School of Chemistry and Chemical Engineering, Liaocheng University, No. 1, Hunan Street, Liaocheng, Shandong 252059, China
| | - Zi-Long Tang
- Key Laboratory of Theoretical Organic Chemistry and Functional Molecule of Ministry of Education, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan 411201, China
| |
Collapse
|
5
|
Xiao J, Li F, Zhong T, Wu X, Guo F, Li Q, Tang ZL. Copper-catalyzed radical oxidative C(sp3)–H/C(sp3)–H cross-coupling between arylacetonitriles and benzylic compounds. Tetrahedron 2020. [DOI: 10.1016/j.tet.2020.131621] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
6
|
Ning Y, He X, Zuo Y, Cai P, Xie M, Wang J, Shang Y. Rhodium(II) Acetate‐Catalysed Cyclization of Pyrazol‐5‐amine and 1,3‐Diketone‐2‐diazo Compounds Using
N
,
N
‐Dimethylformamide as a Carbon‐Hydrogen Source: Access to Pyrazolo[3,4‐
b
]pyridines. Adv Synth Catal 2019. [DOI: 10.1002/adsc.201900093] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Yi Ning
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, College of Chemistry and Materials ScienceAnhui Normal University Wuhu People's Republic of China
| | - Xinwei He
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, College of Chemistry and Materials ScienceAnhui Normal University Wuhu People's Republic of China
| | - Youpeng Zuo
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, College of Chemistry and Materials ScienceAnhui Normal University Wuhu People's Republic of China
| | - Panyuan Cai
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, College of Chemistry and Materials ScienceAnhui Normal University Wuhu People's Republic of China
| | - Mengqing Xie
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, College of Chemistry and Materials ScienceAnhui Normal University Wuhu People's Republic of China
| | - Jian Wang
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, College of Chemistry and Materials ScienceAnhui Normal University Wuhu People's Republic of China
| | - Yongjia Shang
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, College of Chemistry and Materials ScienceAnhui Normal University Wuhu People's Republic of China
| |
Collapse
|
7
|
Deng C, Sun Y, Ren Y, Zhang W. Theoretical studies on Rh(iii)-catalyzed regioselective C-H bond cyanation of indole and indoline. Dalton Trans 2018; 48:168-175. [PMID: 30516212 DOI: 10.1039/c8dt04079f] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Density functional theory calculations were carried out to study the reaction mechanism of the Rh(iii)-catalyzed regioselective C-H cyanation of indole and indoline with N-cyano-N-phenyl-para-methylbenzenesulfonamide (NCTS). This mechanism involves four major steps: C-H activation, cyano group insertion, β-N elimination, and regeneration of active species. How different indole and indoline substrates affect the regioselectivity of C-H bond cyanation has been examined and analyzed in detail. Our calculation results indicate that the regioselectivity of C-H bond cyanation of indole depends on the nucleophilicity of carbon atoms in C-Rh(iii) bonds to the cyano group. For indoline, it can be attributed to the different hybridization platforms of the C-H bond activation.
Collapse
Affiliation(s)
- Chao Deng
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Nanjing 210095, P. R. China.
| | | | | | | |
Collapse
|
8
|
Le Bras J, Muzart J. Recent Uses of N, N-Dimethylformamide and N, N-Dimethylacetamide as Reagents. Molecules 2018; 23:E1939. [PMID: 30081462 PMCID: PMC6222515 DOI: 10.3390/molecules23081939] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 07/30/2018] [Accepted: 07/31/2018] [Indexed: 01/23/2023] Open
Abstract
N,N-Dimethylformamide and N,N-dimethylacetamide are multipurpose reagents which deliver their own H, C, N and O atoms for the synthesis of a variety of compounds under a number of different experimental conditions. The review mainly highlights the corresponding literature published over the last years.
Collapse
Affiliation(s)
- Jean Le Bras
- Institut de Chimie Moléculaire de Reims, CNRS-Université de Reims Champagne-Ardenne, B.P. 1039, 51687 Reims CEDEX 2, France.
| | - Jacques Muzart
- Institut de Chimie Moléculaire de Reims, CNRS-Université de Reims Champagne-Ardenne, B.P. 1039, 51687 Reims CEDEX 2, France.
| |
Collapse
|
9
|
Heravi MM, Ghavidel M, Mohammadkhani L. Beyond a solvent: triple roles of dimethylformamide in organic chemistry. RSC Adv 2018; 8:27832-27862. [PMID: 35542702 PMCID: PMC9084326 DOI: 10.1039/c8ra04985h] [Citation(s) in RCA: 123] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Accepted: 07/23/2018] [Indexed: 12/12/2022] Open
Abstract
N,N-Dimethylformamide (DMF) is frequently used as an aprotic solvent in chemical transformations in laboratories of academia as well as in those of chemical industry. In the present review, we will reveal that DMF is actually something much more than a solvent. It is a unique chemical since, as well as being an effective polar aprotic solvent, it can play three other important roles in organic chemistry. It can be used as a reagent, a catalyst, and a stabilizer.
Collapse
Affiliation(s)
- Majid M Heravi
- Department of Chemistry, School of Sciences, Alzahra University Vanak Tehran Iran
| | - Mahdieh Ghavidel
- Department of Chemistry, School of Sciences, Alzahra University Vanak Tehran Iran
| | - Leyla Mohammadkhani
- Department of Chemistry, School of Sciences, Alzahra University Vanak Tehran Iran
| |
Collapse
|
10
|
Nosova EV, Lipunova GN, Charushin VN, Chupakhin ON. Fluorine-containing indoles: Synthesis and biological activity. J Fluor Chem 2018. [DOI: 10.1016/j.jfluchem.2018.05.012] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
11
|
Boosa V, Bilakanti V, Velisoju VK, Gutta N, Inkollu S, Akula V. An insight on the influence of surface Lewis acid sites for regioselective C H bond C3-cyanation of indole using NH4I and DMF as combined cyanide source over Cu/SBA-15 catalyst. MOLECULAR CATALYSIS 2018. [DOI: 10.1016/j.mcat.2017.11.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
12
|
Deng X, Lei X, Nie G, Jia L, Li Y, Chen Y. Copper-Catalyzed Cross-Dehydrogenative N 2-Coupling of NH-1,2,3-Triazoles with N,N -Dialkylamides: N-Amidoalkylation of NH-1,2,3-Triazoles. J Org Chem 2017; 82:6163-6171. [PMID: 28558242 DOI: 10.1021/acs.joc.7b00752] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
An efficient copper-catalyzed C-N bond formation by N-H/C-H cross-dehydrogenative coupling (CDC) between NH-1,2,3-triazoles and N,N-dialkylamides has been developed. The method provided N-amidoalkylated 1,2,3-triazoles with moderate to high yields, and the reactions showed high N2-selectivities when 4,5-disubstituted NH-1,2,3-triazoles served as the substrates.
Collapse
Affiliation(s)
- Xiaocong Deng
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology , Wuhan 430073, People's Republic of China
| | - Xue Lei
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology , Wuhan 430073, People's Republic of China
| | - Gang Nie
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology , Wuhan 430073, People's Republic of China
| | - Lihui Jia
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology , Wuhan 430073, People's Republic of China
| | - Yuanxiang Li
- College of Chemistry and Materials Engineering, Huaihua University , Huaihua 418008, People's Republic of China
| | - Yunfeng Chen
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology , Wuhan 430073, People's Republic of China
| |
Collapse
|
13
|
Xu C, Qin M, Yi J, Wang Y, Chen Y, Zhang B, Zhao Y, Gong P. Copper( ii)-mediated formation of oxazole-4-carbonitrile from acetophenone and coordinated cyanide anion via a radical coupling. RSC Adv 2017. [DOI: 10.1039/c7ra01983a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A protocol for the direct synthesis of 4-aryloxazole-5-carbonitrile from acetophenone was first described.
Collapse
Affiliation(s)
- Congjun Xu
- Key Laboratory of Structure-based Drug Design and Discovery
- Shenyang Pharmaceutical University
- Ministry of Education
- Shenyang 110016
- People's Republic of China
| | - Mingze Qin
- Key Laboratory of Structure-based Drug Design and Discovery
- Shenyang Pharmaceutical University
- Ministry of Education
- Shenyang 110016
- People's Republic of China
| | - Jun Yi
- Key Laboratory of Structure-based Drug Design and Discovery
- Shenyang Pharmaceutical University
- Ministry of Education
- Shenyang 110016
- People's Republic of China
| | - Yanjing Wang
- Key Laboratory of Structure-based Drug Design and Discovery
- Shenyang Pharmaceutical University
- Ministry of Education
- Shenyang 110016
- People's Republic of China
| | - Yanfeng Chen
- Key Laboratory of Structure-based Drug Design and Discovery
- Shenyang Pharmaceutical University
- Ministry of Education
- Shenyang 110016
- People's Republic of China
| | - Bingfu Zhang
- Key Laboratory of Structure-based Drug Design and Discovery
- Shenyang Pharmaceutical University
- Ministry of Education
- Shenyang 110016
- People's Republic of China
| | - Yanfang Zhao
- Key Laboratory of Structure-based Drug Design and Discovery
- Shenyang Pharmaceutical University
- Ministry of Education
- Shenyang 110016
- People's Republic of China
| | - Ping Gong
- Key Laboratory of Structure-based Drug Design and Discovery
- Shenyang Pharmaceutical University
- Ministry of Education
- Shenyang 110016
- People's Republic of China
| |
Collapse
|
14
|
Kianmehr E, Faghih N, Tanbakouchian A, Mahdavi M. Palladium-Catalyzed Regioselective Direct Cyanation of Acetanilide Derivatives with K4[Fe(CN)6] by C-H Bond Activation. European J Org Chem 2016. [DOI: 10.1002/ejoc.201600618] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Ebrahim Kianmehr
- School of Chemistry; College of Science; University of Tehran; Tehran Iran
| | - Nasser Faghih
- School of Chemistry; College of Science; University of Tehran; Tehran Iran
| | | | - Mohammad Mahdavi
- Drug Design and Development Research Center; College of Science; Tehran University of Medical Sciences; Tehran Iran
| |
Collapse
|