1
|
Gettler J, Markovič M, Koóš P, Gracza T. Recent Advances in the Research on Luotonins A, B, and E. Molecules 2024; 29:3522. [PMID: 39124927 PMCID: PMC11314610 DOI: 10.3390/molecules29153522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 07/24/2024] [Accepted: 07/24/2024] [Indexed: 08/12/2024] Open
Abstract
This digest review summarises the most recent progress in the study on luotonins A, B and E. The literature covered in this overview spans from January 2012 to April 2024 and presents synthetic methodologies for the assembly of the quinolinopyrrolo-quinazoline scaffold, the structural motifs present in luotonins A, B, and E, and the evaluation of the biological activities of their derivatives and structural analogues.
Collapse
Affiliation(s)
| | - Martin Markovič
- Department of Organic Chemistry, Institute of Organic Chemistry, Catalysis and Petrochemistry, Slovak University of Technology, Radlinského 9, SK-812 37 Bratislava, Slovakia; (J.G.); (T.G.)
| | - Peter Koóš
- Department of Organic Chemistry, Institute of Organic Chemistry, Catalysis and Petrochemistry, Slovak University of Technology, Radlinského 9, SK-812 37 Bratislava, Slovakia; (J.G.); (T.G.)
| | | |
Collapse
|
2
|
Sakaine G, Ture A, Pedroni J, Smits G. Isolation, chemistry, and biology of pyrrolo[1,4]benzodiazepine natural products. Med Res Rev 2021; 42:5-55. [PMID: 33846985 DOI: 10.1002/med.21803] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 02/11/2021] [Accepted: 03/23/2021] [Indexed: 11/06/2022]
Abstract
The isolation of the antitumor antibiotic anthramycin in the 1960s prompted extensive research into pyrrolo[1,4]benzodiazepines (PBD) as potential therapeutics for the treatment of cancers. Since then, nearly 60 PBD natural products have been isolated and evaluated with regard to their biological activity. Synthetic studies and total syntheses have enabled access to PBD analogues, culminating in the development of highly potent anticancer agents. This review provides a summary of the occurrence and biological activity of PBD natural products and covers the strategies employed for their total syntheses.
Collapse
Affiliation(s)
- Guna Sakaine
- Latvian Institute of Organic Synthesis, Riga, Latvia
| | | | - Julia Pedroni
- Latvian Institute of Organic Synthesis, Riga, Latvia
| | - Gints Smits
- Latvian Institute of Organic Synthesis, Riga, Latvia
| |
Collapse
|
3
|
Kim K, Kim HY, Oh K. ortho-Naphthoquinone-catalyzed aerobic oxidation of amines to fused pyrimidin-4(3H)-ones: a convergent synthetic route to bouchardatine and sildenafil. RSC Adv 2020; 10:31101-31105. [PMID: 35520643 PMCID: PMC9056348 DOI: 10.1039/d0ra06820a] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 08/14/2020] [Indexed: 12/21/2022] Open
Abstract
A facile access to fused pyrimidin-4(3H)-one derivatives has been established by using the metal-free ortho-naphthoquinone-catalyzed aerobic cross-coupling reactions of amines. The utilization of two readily available amines allowed a direct coupling strategy to quinazolinone natural product, bouchardatine, as well as sildenafil (Viagra™) in a highly convergent manner. Fused pyrimidin-4(3H)-one derivatives have been accessed by using the ortho-naphthoquinone-catalyzed aerobic cross-coupling reactions of amines.![]()
Collapse
Affiliation(s)
- Kyeongha Kim
- Center for Metareceptome Research
- Graduate School of Pharmaceutical Sciences
- Chung-Ang University
- Seoul 06974
- Republic of Korea
| | - Hun Young Kim
- Center for Metareceptome Research
- Graduate School of Pharmaceutical Sciences
- Chung-Ang University
- Seoul 06974
- Republic of Korea
| | - Kyungsoo Oh
- Center for Metareceptome Research
- Graduate School of Pharmaceutical Sciences
- Chung-Ang University
- Seoul 06974
- Republic of Korea
| |
Collapse
|
4
|
Brahmachari G, Nurjamal K, Begam S, Mandal M, Nayek N, Karmakar I, Mandal B. Alum (KAl(SO4)2.12H2O) - An Eco-friendly and Versatile Acid-catalyst in Organic Transformations: A Recent Update. CURRENT GREEN CHEMISTRY 2019. [DOI: 10.2174/2213346106666190307160332] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Potassium alum (KAl(SO4)2.12H2O), commonly known as ‘alum’, has recently drawn the attention of synthetic chemists as an efficient, safe and eco-friendly acid catalyst in implementing a large number of organic transformations, thereby generating interesting molecular frameworks. The present review article offers an overview of the potent catalytic applications of this commercially available and low-cost inorganic sulfate salt in organic reactions reported during the period of 2014 to 2018.
Collapse
Affiliation(s)
- Goutam Brahmachari
- Laboratory of Natural Products & Organic Synthesis, Department of Chemistry, Visva-Bharati (Central University), Santiniketan-731 235, West Bengal, India
| | - Khondekar Nurjamal
- Laboratory of Natural Products & Organic Synthesis, Department of Chemistry, Visva-Bharati (Central University), Santiniketan-731 235, West Bengal, India
| | - Sanchari Begam
- Laboratory of Natural Products & Organic Synthesis, Department of Chemistry, Visva-Bharati (Central University), Santiniketan-731 235, West Bengal, India
| | - Mullicka Mandal
- Laboratory of Natural Products & Organic Synthesis, Department of Chemistry, Visva-Bharati (Central University), Santiniketan-731 235, West Bengal, India
| | - Nayana Nayek
- Laboratory of Natural Products & Organic Synthesis, Department of Chemistry, Visva-Bharati (Central University), Santiniketan-731 235, West Bengal, India
| | - Indrajit Karmakar
- Laboratory of Natural Products & Organic Synthesis, Department of Chemistry, Visva-Bharati (Central University), Santiniketan-731 235, West Bengal, India
| | - Bhagirath Mandal
- Laboratory of Natural Products & Organic Synthesis, Department of Chemistry, Visva-Bharati (Central University), Santiniketan-731 235, West Bengal, India
| |
Collapse
|
5
|
Mahajan PS, Mhaske SB. Silver-Mediated Oxidative Decarboxylative Intramolecular Asymmetric Radical Cyclization (C sp3-C sp2) via Memory of Chirality: Access to Circumdatin Alkaloids. Org Lett 2018; 20:2092-2095. [PMID: 29578718 DOI: 10.1021/acs.orglett.8b00652] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
A novel silver-mediated oxidative decarboxylative intramolecular asymmetric radical cyclization has been developed to form a Csp3-Csp2 bond via memory of chirality. The application of the process has been demonstrated for the synthesis of the circumdatin class of alkaloids in high enantiopurity with retention of the configuration. The developed protocol is mild and works with an inexpensive silver catalyst in the absence of ligand, base, or additives. The involvement of a monoradical in the reaction has been established by trapping the radical intermediate.
Collapse
|
6
|
Synthesis, spectroscopic and DFT studies of novel 4-(morpholinomethyl)-5-oxo-1-phenylpyrrolidine-3-carboxylic acid. J Mol Struct 2018. [DOI: 10.1016/j.molstruc.2017.12.065] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
7
|
Toyota M, Kagawa N, Nishimura K, Abe S. Concise Approach to Mono- and Disubstituted Luotonin A Analogs and Their Cytotoxicity Test. HETEROCYCLES 2018. [DOI: 10.3987/com-17-s(t)6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
8
|
Chaudhary AP, Bharti SK, Kumar S, Ved K, Padam K. Study of molecular structure, chemical reactivity and first hyperpolarizability of a newly synthesized N-(4-oxo-2-phenylquinazolin-3(4H)-yl)-1H-indole-2-carboxamide using spectral analysis. J Mol Struct 2017. [DOI: 10.1016/j.molstruc.2017.05.095] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
9
|
Mohammadi AA, Ahdenov R, Abolhasani Sooki A. Design, synthesis and antibacterial evaluation of 2-alkyl- and 2-aryl-3-(phenylamino)quinazolin-4(3H)-one derivatives. HETEROCYCL COMMUN 2017. [DOI: 10.1515/hc-2016-0201] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Abstract2-Alkyl and 2-aryl-3-(phenylamino)quinazolin-4(3H)-ones 4a–h were synthesized in a one-pot three-component condensation of an isatoic anhydride 1a–h, ethyl or methyl ortho ester and phenylhydrazine in the presence of KAl(SO4)2·12H2O (alum) as a nontoxic, reusable, inexpensive and easily available catalyst. The synthesis was conducted under microwave irradiation or classical heating. Products 4a and 4b show good antimicrobial activities.
Collapse
Affiliation(s)
- Ali Asghar Mohammadi
- 1Department of Chemistry, Sabzevar Branch, Islamic Azad University, Sabzevar, Iran
| | - Reza Ahdenov
- 1Department of Chemistry, Sabzevar Branch, Islamic Azad University, Sabzevar, Iran
| | - Ali Abolhasani Sooki
- 2Shaheed Beheshti University, Academic Center for Education, Culture, and Research, Research Institute of Applied Sciences, Tehran, Iran
| |
Collapse
|
10
|
Ionic Liquid [HMIm]BF4Mediated and Promoted Eco-Friendly One-Pot Sequential Synthesis of New Isoxazolyl Quinazolin-4(3H)-ones. ChemistrySelect 2017. [DOI: 10.1002/slct.201700247] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
11
|
Zhang J, Cheng P, Ma Y, Liu J, Miao Z, Ren D, Fan C, Liang M, Liu L. An efficient nano CuO-catalyzed synthesis and biological evaluation of quinazolinone Schiff base derivatives and bis-2,3-dihydroquinazolin-4(1H)-ones as potent antibacterial agents against Streptococcus lactis. Tetrahedron Lett 2016. [DOI: 10.1016/j.tetlet.2016.10.047] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|