1
|
Tang J, Li Z, Meng Q, Liu L, Huang T, Li C, Li Q, Chen T. CuH-Catalyzed Reductive Coupling of Nitroarenes with Phosphine Oxides for the Direct Synthesis of Phosphamides. J Org Chem 2024. [PMID: 38809686 DOI: 10.1021/acs.joc.4c00522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2024]
Abstract
A CuH-catalyzed reductive coupling of nitroarenes with phosphine oxides is developed, which produces a series of phosphamides in moderate to excellent yields with good functional group tolerance. Gram-scale synthesis and late-stage modification of nitro-aromatic functional molecule niclosamide are also successfully conducted. The mechanism study shows that the nitro group is transformed after being reduced to nitroso and a nucleophilic addition procedure is involved during the reaction.
Collapse
Affiliation(s)
- Jie Tang
- Hainan Provincial Key Laboratory of Fine Chemical, School of Chemistry and Chemical Engineering, Hainan University, Haikou, Hainan 570228, China
| | - Zhiyou Li
- Hainan Provincial Key Laboratory of Fine Chemical, School of Chemistry and Chemical Engineering, Hainan University, Haikou, Hainan 570228, China
| | - Qi Meng
- Hainan Provincial Key Laboratory of Fine Chemical, School of Chemistry and Chemical Engineering, Hainan University, Haikou, Hainan 570228, China
| | - Long Liu
- Hainan Provincial Key Laboratory of Fine Chemical, School of Chemistry and Chemical Engineering, Hainan University, Haikou, Hainan 570228, China
| | - Tianzeng Huang
- Hainan Provincial Key Laboratory of Fine Chemical, School of Chemistry and Chemical Engineering, Hainan University, Haikou, Hainan 570228, China
| | - Chunya Li
- Hainan Provincial Key Laboratory of Fine Chemical, School of Chemistry and Chemical Engineering, Hainan University, Haikou, Hainan 570228, China
| | - Qiang Li
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, No. 1, Hunan Street, Liaocheng, Shandong 252000, China
| | - Tieqiao Chen
- Hainan Provincial Key Laboratory of Fine Chemical, School of Chemistry and Chemical Engineering, Hainan University, Haikou, Hainan 570228, China
| |
Collapse
|
2
|
Zheng L, Cai L, Mei W, Liu G, Deng L, Zou X, Zhuo X, Zhong Y, Guo W. Copper-Catalyzed Phosphorylation of N, N-Disubstituted Hydrazines: Synthesis of Multisubstituted Phosphorylhydrazides as Potential Anticancer Agents. J Org Chem 2022; 87:6224-6236. [PMID: 35442041 DOI: 10.1021/acs.joc.2c00452] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
An efficient copper-catalyzed aerobic oxidative cross-dehydrogenative coupling reaction for the synthesis of multisubstituted phosphorylhydrazides from N,N-disubstituted hydrazines and hydrogen phosphoryl compounds is accomplished. The reaction proceeds under mild conditions without the addition of any external oxidants and bases. This work reported here represents a direct P(═O)-N-N bond formation with the advantages of being operationally simple, good functional group tolerance, and high atom and step economy. Furthermore, the selected compounds exhibit potential inhibitory activity against tumor cells, which can be used in the field of screening of anticancer agents as new chemical entities.
Collapse
Affiliation(s)
- Lvyin Zheng
- Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province, Gannan Normal University, Ganzhou 341000, China
| | - Liuhuan Cai
- Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province, Gannan Normal University, Ganzhou 341000, China
| | - Weijie Mei
- Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province, Gannan Normal University, Ganzhou 341000, China
| | - Gongping Liu
- Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province, Gannan Normal University, Ganzhou 341000, China
| | - Ling Deng
- Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province, Gannan Normal University, Ganzhou 341000, China
| | - Xiaoying Zou
- Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province, Gannan Normal University, Ganzhou 341000, China
| | - Xiaoya Zhuo
- Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province, Gannan Normal University, Ganzhou 341000, China
| | - Yumei Zhong
- Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province, Gannan Normal University, Ganzhou 341000, China
| | - Wei Guo
- Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province, Gannan Normal University, Ganzhou 341000, China
| |
Collapse
|
3
|
Zhu YY, Niu Y, Niu YN, Yang SD. Recent advances in the synthesis and applications of phosphoramides. Org Biomol Chem 2021; 19:10296-10313. [PMID: 34812834 DOI: 10.1039/d1ob01566d] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Phosphoramide, as an important framework of many biologically active molecules, has attracted widespread attention in recent decades. It is not only widely used in pharmaceuticals because of its excellent biological activities, but it also shows good performance in organic dyes, flame retardants and extractors. Thus, it is of great significance to develop effective and convenient methods for the synthesis of phosphoramides. In this review, the recent advancements made in the synthesis routes and applications of phosphoramides are discussed. The synthetic strategies of phosphoramides can be separated into five categories: phosphorus halides as the substrate, phosphates as the substrate, phosphorus hydrogen as the substrate, azides as the substrate and other methods. The latest examples of these methods are provided and some representative mechanisms are also described.
Collapse
Affiliation(s)
- Yuan-Yuan Zhu
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China.
| | - Yuan Niu
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China.
| | - Yan-Ning Niu
- Department of Teaching and Research, Nanjing Forestry University, Huaian 223003, P. R. China
| | - Shang-Dong Yang
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China.
| |
Collapse
|
4
|
Lee KL, Feld J, Hume P, Söhnel T, Leitao E. The Synthesis and Mechanistic Considerations of a Series of Ammonium Monosubstituted H-Phosphonate Salts. Chemistry 2021; 27:815-824. [PMID: 32830385 DOI: 10.1002/chem.202003090] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 08/01/2020] [Indexed: 11/11/2022]
Abstract
A series of ammonium monosubstituted H-phosphonate salts were synthesized by combining H-phosphonate diesters with amines in the absence of solvent at 80 °C. Variation of the ester substituent and amine produced a range of ionic liquids with low melting points. The products and by-products were analyzed by spectroscopic and spectrometric techniques in order to get a better mechanistic picture of the dealkylation and formal dearylation observed. For dialkyl H-phosphonate diesters, (RO)2 P(O)H (R=alkyl), the reaction proceeds via direct dealkylation with the reactivity increasing in the order R=iPr<Et<Me corresponding to DFT calculated activation enthalpies of 22.6, 20.8, and 17.9 kcal mol-1 . For the diphenyl H-phosphonate diesters, (PhO)2 P(O)H, the dearylation was found to proceed via phenol-assisted formation of a 5-coordinate intermediate, (PhO)3 PH(OH), from which P(OPh)3 and water were eliminated. The presence of an equivalent of water then facilitated the formation of P(OH)2 OPh and the amine, R'NH2 , subsequently abstracted a proton from it to yield [(PhO)PH(O)O]- [R'NH3 ]+ .
Collapse
Affiliation(s)
- Keng Lung Lee
- School of Chemical Sciences, University of Auckland, Private Bag, 92019, Auckland, 1142, New Zealand.,The MacDiarmid Institute for Advanced Materials and Nanotechnology, New Zealand
| | - Joey Feld
- School of Chemical Sciences, University of Auckland, Private Bag, 92019, Auckland, 1142, New Zealand
| | - Paul Hume
- The MacDiarmid Institute for Advanced Materials and Nanotechnology, New Zealand.,School of Chemical and Physical Sciences, Victoria University of Wellington, PO Box 600, 6140, Wellington, New Zealand
| | - Tilo Söhnel
- School of Chemical Sciences, University of Auckland, Private Bag, 92019, Auckland, 1142, New Zealand.,The MacDiarmid Institute for Advanced Materials and Nanotechnology, New Zealand
| | - Erin Leitao
- School of Chemical Sciences, University of Auckland, Private Bag, 92019, Auckland, 1142, New Zealand.,The MacDiarmid Institute for Advanced Materials and Nanotechnology, New Zealand
| |
Collapse
|
5
|
Tan C, Liu X, Jia H, Zhao X, Chen J, Wang Z, Tan J. Practical Synthesis of Phosphinic Amides/Phosphoramidates through Catalytic Oxidative Coupling of Amines and P(O)-H Compounds. Chemistry 2019; 26:881-887. [PMID: 31625634 DOI: 10.1002/chem.201904237] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Revised: 10/17/2019] [Indexed: 12/24/2022]
Abstract
Herein, we report a highly efficient ZnI2 -triggered oxidative cross-coupling reaction of P(O)-H compounds and amines. This operationally simple protocol provides unprecedented generic access to phosphinic amides/phosphoramidate derivatives in good yields and short reaction time. Besides, the reaction proceeds under mild conditions, which avoids the use of hazardous reagents, and is applicable to scale-up syntheses as well as late-stage functionalization of drug molecules. The stereospecific coupling is also achieved from readily available optically enriched P(O)-H compounds.
Collapse
Affiliation(s)
- Chen Tan
- Department of Organic Chemistry, Beijing Advanced Innovation Center for, Soft Matter Science and Engineering, College of Science, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Xinyuan Liu
- Department of Organic Chemistry, Beijing Advanced Innovation Center for, Soft Matter Science and Engineering, College of Science, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Huanxin Jia
- Department of Organic Chemistry, Beijing Advanced Innovation Center for, Soft Matter Science and Engineering, College of Science, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Xiaowen Zhao
- Department of Organic Chemistry, Beijing Advanced Innovation Center for, Soft Matter Science and Engineering, College of Science, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Jian Chen
- Department of Organic Chemistry, Beijing Advanced Innovation Center for, Soft Matter Science and Engineering, College of Science, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Zhiyong Wang
- Hefei National Laboratory for Physical Sciences at Microscale, CAS Key Laboratory of Soft Matter Chemistry &, Center for Excellence in Molecular Synthesis of, the Chinese Academy of Sciences, University of Science and Technology of China Institution, Hefei, 230026, P. R. China
| | - Jiajing Tan
- Department of Organic Chemistry, Beijing Advanced Innovation Center for, Soft Matter Science and Engineering, College of Science, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| |
Collapse
|
6
|
Lee KL, Feld J, Ben‐Tal Y, Guo Z, Hume P, Leitao EM. Facile Substituent Exchange at
H
‐Phosphonate Diesters Limiting an Effective Synthesis of
D
‐Phosphonate Diesters. ASIAN J ORG CHEM 2019. [DOI: 10.1002/ajoc.201900430] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Keng Lung Lee
- School of Chemical SciencesUniversity of Auckland, Private Bag 92019 Auckland 1142 New Zealand
| | - Joey Feld
- School of Chemical SciencesUniversity of Auckland, Private Bag 92019 Auckland 1142 New Zealand
| | - Yael Ben‐Tal
- School of Chemical SciencesUniversity of Auckland, Private Bag 92019 Auckland 1142 New Zealand
| | - Zhaoyang Guo
- School of Chemical SciencesUniversity of Auckland, Private Bag 92019 Auckland 1142 New Zealand
| | - Paul Hume
- School of Chemical and Physical SciencesVictoria University Wellington, Wellington 6010 New Zealand
- The MacDiarmid Institute for Advanced Materials and Nanotechnology New Zealand
| | - Erin M. Leitao
- School of Chemical SciencesUniversity of Auckland, Private Bag 92019 Auckland 1142 New Zealand
- The MacDiarmid Institute for Advanced Materials and Nanotechnology New Zealand
| |
Collapse
|
7
|
Xiao J, Su Q, Dong W, Peng Z, Zhang Y, An D. Copper-Catalyzed Oxidative Alkylation (Methylation) of Phosphonamides and Phosphinamides Using Dicumyl Peroxide. J Org Chem 2017; 82:9497-9504. [PMID: 28831800 DOI: 10.1021/acs.joc.7b01527] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
An effective and practical CuI-catalyzed methodology toward N-alkyl or N-methyl phosphonamides and phosphinamides was herein demonstrated. The transformation took place readily under the oxidative conditions, and plenty of N-alkylated (methylated) amides (30 examples) were successfully furnished in high efficiency (up to 92% yields). Dicumyl peroxide was considered to act either as the oxidant for the alkylation reaction or as methyl donator for the methylation protocol.
Collapse
Affiliation(s)
- Jing Xiao
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University , Changsha 410082, P. R. China
| | - Qiong Su
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University , Changsha 410082, P. R. China
| | - Wanrong Dong
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University , Changsha 410082, P. R. China
| | - Zhihong Peng
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University , Changsha 410082, P. R. China
| | - Yingjun Zhang
- State Key Laboratory of Anti-Infective Drug Development (NO. 2015DQ780357), Sunshine Lake Pharma Co., Ltd , Dongguan 523871, P. R. China
| | - Delie An
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University , Changsha 410082, P. R. China
| |
Collapse
|