1
|
Khoranyan TE, Larin AA, Suponitsky KY, Ananyev IV, Melnikov IN, Kosareva EK, Muravyev NV, Dalinger IL, Pivkina AN, Fershtat LL. First Alliance of Pyrazole and Furoxan Leading to High-Performance Energetic Materials. ACS APPLIED MATERIALS & INTERFACES 2024; 16:53972-53979. [PMID: 39318327 DOI: 10.1021/acsami.4c12242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2024]
Abstract
Nitrogen heterocyclic scaffolds retain their leading position as valuable building blocks in material science, particularly for the design of small-molecule energetic materials. However, the search for more balanced combinations of directly linked heterocyclic cores is far from being exhausted and aims to reach ideally balanced high-energy substances. Herein, we present the synthetic route to novel pyrazole-furoxan framework enriched with nitro groups and demonstrate a promising set of properties, viz., good thermal stability, acceptable mechanical sensitivity, and high detonation performance. In-depth crystal analysis showed that the isomers having lower-impact sensitivity values in both types of regioisomeric pairs are those with the exocyclic furoxan oxygen atom being closer to the pyrazole ring. Owing to the favorable combination of high crystal densities (1.83-1.93 g cm-3), positive oxygen balance to CO (up to +13.9%), and high enthalpies of formation (322-435 kJ mol-1), the synthesized compounds show high calculated detonation velocities (8.4-9.1 km s-1) and excellent metal accelerating abilities. The incorporation of the 3-nitrofuroxan moiety increases the thermal stability (by ca. 20 °C) and decreases the mechanical sensitivity of target hybrid materials in both types of regioisomeric pairs. Simultaneously, the detonation performance of 3-nitrofuroxans is almost identical to that of 4-nitrofuroxans, highlighting the potential of the regioisomeric tunability in the future design of energetic materials.
Collapse
Affiliation(s)
- Tigran E Khoranyan
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prosp. 47, Moscow 119991, Russian Federation
| | - Alexander A Larin
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prosp. 47, Moscow 119991, Russian Federation
| | - Kyrill Yu Suponitsky
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilova Str. 28, Moscow 119991, Russian Federation
| | - Ivan V Ananyev
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilova Str. 28, Moscow 119991, Russian Federation
- N.S. Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Leninsky prosp. 31, Moscow 119991, Russian Federation
| | - Igor N Melnikov
- N. N. Semenov Federal Research Centre for Chemical Physics, Russian Academy of Sciences, Kosygin Str. 4, Moscow 119991, Russian Federation
| | - Ekaterina K Kosareva
- N. N. Semenov Federal Research Centre for Chemical Physics, Russian Academy of Sciences, Kosygin Str. 4, Moscow 119991, Russian Federation
| | - Nikita V Muravyev
- N. N. Semenov Federal Research Centre for Chemical Physics, Russian Academy of Sciences, Kosygin Str. 4, Moscow 119991, Russian Federation
| | - Igor L Dalinger
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prosp. 47, Moscow 119991, Russian Federation
| | - Alla N Pivkina
- N. N. Semenov Federal Research Centre for Chemical Physics, Russian Academy of Sciences, Kosygin Str. 4, Moscow 119991, Russian Federation
| | - Leonid L Fershtat
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prosp. 47, Moscow 119991, Russian Federation
| |
Collapse
|
2
|
Larin AA, Shaferov AV, Monogarov KA, Meerov DB, Pivkina AN, Fershtat LL. Novel energetic oxadiazole assemblies. MENDELEEV COMMUNICATIONS 2022. [DOI: 10.1016/j.mencom.2022.01.036] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
3
|
Potassium (3-Methyl-2-oxido-1,2,5-oxadiazol-4-yl)dinitromethanide. MOLBANK 2021. [DOI: 10.3390/m1301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Furoxan derivatives enriched with explosophoric functionalities are promising compounds in the preparation of novel energetic materials. Herein, a previously unknown potassium (3-methyl-2-oxido-1,2,5-oxadiazol-4-yl)dinitromethanide (also referred to as potassium 4-dinitromethyl-3-methylfuroxanate) was synthesized via tandem nitration-reduction reactions of an available (furoxanyl)chloroxime. The structure of the synthesized compound was established by elemental analysis, IR, 1H, 13C and 14N NMR spectroscopy. Thermal stability and mechanical sensitivity of the prepared compound toward impact and friction were experimentally determined.
Collapse
|
4
|
Recent Synthetic Efforts towards High Energy Density Materials: How to Design High-Performance Energetic Structures? FIREPHYSCHEM 2021. [DOI: 10.1016/j.fpc.2021.09.005] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
5
|
Larin AA, Shaferov AV, Kulikov AS, Pivkina AN, Monogarov KA, Dmitrienko AO, Ananyev IV, Khakimov DV, Fershtat L, Makhova NN. Design and Synthesis of Nitrogen-Rich Azo-Bridged Furoxanylazoles as High-Performance Energetic Materials. Chemistry 2021; 27:14628-14637. [PMID: 34324750 DOI: 10.1002/chem.202101987] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Indexed: 11/05/2022]
Abstract
A series of novel energetic materials comprising of azo-bridged furoxanylazoles enriched with energetic functionalities was designed and synthesized. These high-energy materials were thoroughly characterized by IR and multinuclear NMR ( 1 H, 13 C, 14 N) spectroscopy, high-resolution mass spectrometry, elemental analysis, and differential scanning calorimetry (DSC). The molecular structures of representative amino and azo oxadiazole assemblies were additionally confirmed by single-crystal X-ray diffraction and X-ray powder diffraction. A comparison of contributions of explosophoric moieties into the density of energetic materials revealed that furoxan and 1,2,4-oxadiazole rings are the densest motifs while the substitution of the azide and amino fragments on the nitro and azo ones leads to an increase of the density. Azo bridged energetic materials have high nitrogen-oxygen contents (68.8-76.9%) and high thermal stability. The synthesized compounds exhibit good experimental densities (1.62-1.88 g cm -3 ), very high enthalpies of formation (846-1720 kJ mol -1 ), and, as a result, excellent detonation performance (detonation velocities 7.66-9.09 km s -1 and detonation pressures 25.0-37.7 GPa). From the application perspective, the detonation parameters of azo oxadiazole assemblies exceed those of the benchmark explosive RDX, while a combination of high detonation performance and acceptable friction sensitivity of azo(1,2,4-triazolylfuroxan) make it a promising potential alternative to PETN.
Collapse
Affiliation(s)
- Alexander A Larin
- Zelinsky Institute of Organic Chemistry RAS: Institut organiceskoj himii imeni N D Zelinskogo RAN, N.D. Zelinsky Institute of Organic Chemistry RAS, Moscow, RUSSIAN FEDERATION
| | - Alexander V Shaferov
- Zelinsky Institute of Organic Chemistry RAS: Institut organiceskoj himii imeni N D Zelinskogo RAN, N.D. Zelinsky Institute of Organic Chemistry RAS, RUSSIAN FEDERATION
| | - Alexander S Kulikov
- Zelinsky Institute of Organic Chemistry RAS: Institut organiceskoj himii imeni N D Zelinskogo RAN, N.D. Zelinsky Institute of Organic Chemistry RAS, RUSSIAN FEDERATION
| | - Alla N Pivkina
- Institut himiceskoj fiziki imeni N N Semenova RAN, N.N. Semenov Federal Research Center for Chemical Physics, RUSSIAN FEDERATION
| | - Konstantin A Monogarov
- Institut himiceskoj fiziki imeni N N Semenova RAN, N.N. Semenov Federal Research Center for Chemical Physics, RUSSIAN FEDERATION
| | - Artem O Dmitrienko
- Lomonosov Moscow State University: Moskovskij gosudarstvennyj universitet imeni M V Lomonosova, Chemistry, RUSSIAN FEDERATION
| | - Ivan V Ananyev
- A N Nesmeyanov Institute of Organoelement Compounds RAS: Institut elementoorganiceskih soedinenij imeni A N Nesmeanova RAN, A.N. Nesmeyanov Institute of Organoelement Compounds, RUSSIAN FEDERATION
| | - Dmitry V Khakimov
- Zelinsky Institute of Organic Chemistry RAS: Institut organiceskoj himii imeni N D Zelinskogo RAN, N.D. Zelinsky Institute of Organic Chemistry RAS, RUSSIAN FEDERATION
| | - Leonid Fershtat
- Russian Academy of Sciences, N.D. Zelinsky Institute of Organic Chemistry, Leninsky prosp., 47, 119991, Moscow, RUSSIAN FEDERATION
| | - Nina N Makhova
- Zelinsky Institute of Organic Chemistry RAS: Institut organiceskoj himii imeni N D Zelinskogo RAN, N.D. Zelinsky Institute of Organic Chemistry RAS, RUSSIAN FEDERATION
| |
Collapse
|
6
|
Larin AA, Bystrov DM, Fershtat LL, Konnov AA, Makhova NN, Monogarov KA, Meerov DB, Melnikov IN, Pivkina AN, Kiselev VG, Muravyev NV. Nitro-, Cyano-, and Methylfuroxans, and Their Bis-Derivatives: From Green Primary to Melt-Cast Explosives. Molecules 2020; 25:molecules25245836. [PMID: 33322001 PMCID: PMC7764251 DOI: 10.3390/molecules25245836] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 12/07/2020] [Accepted: 12/08/2020] [Indexed: 12/03/2022] Open
Abstract
In the present work, we studied in detail the thermochemistry, thermal stability, mechanical sensitivity, and detonation performance for 20 nitro-, cyano-, and methyl derivatives of 1,2,5-oxadiazole-2-oxide (furoxan), along with their bis-derivatives. For all species studied, we also determined the reliable values of the gas-phase formation enthalpies using highly accurate multilevel procedures W2-F12 and/or W1-F12 in conjunction with the atomization energy approach and isodesmic reactions with the domain-based local pair natural orbital (DLPNO) modifications of the coupled-cluster techniques. Apart from this, we proposed reliable benchmark values of the formation enthalpies of furoxan and a number of its (azo)bis-derivatives. Additionally, we reported the previously unknown crystal structure of 3-cyano-4-nitrofuroxan. Among the monocyclic compounds, 3-nitro-4-cyclopropyl and dicyano derivatives of furoxan outperformed trinitrotoluene, a benchmark melt-cast explosive, exhibited decent thermal stability (decomposition temperature >200 °C) and insensitivity to mechanical stimuli while having notable volatility and low melting points. In turn, 4,4′-azobis-dicarbamoyl furoxan is proposed as a substitute of pentaerythritol tetranitrate, a benchmark brisant high explosive. Finally, the application prospects of 3,3′-azobis-dinitro furoxan, one of the most powerful energetic materials synthesized up to date, are limited due to the tremendously high mechanical sensitivity of this compound. Overall, the investigated derivatives of furoxan comprise multipurpose green energetic materials, including primary, secondary, melt-cast, low-sensitive explosives, and an energetic liquid.
Collapse
Affiliation(s)
- Alexander A. Larin
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky Ave., 119991 Moscow, Russia; (A.A.L.); (D.M.B.); (L.L.F.); (A.A.K.); (N.N.M.)
| | - Dmitry M. Bystrov
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky Ave., 119991 Moscow, Russia; (A.A.L.); (D.M.B.); (L.L.F.); (A.A.K.); (N.N.M.)
| | - Leonid L. Fershtat
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky Ave., 119991 Moscow, Russia; (A.A.L.); (D.M.B.); (L.L.F.); (A.A.K.); (N.N.M.)
| | - Alexey A. Konnov
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky Ave., 119991 Moscow, Russia; (A.A.L.); (D.M.B.); (L.L.F.); (A.A.K.); (N.N.M.)
| | - Nina N. Makhova
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky Ave., 119991 Moscow, Russia; (A.A.L.); (D.M.B.); (L.L.F.); (A.A.K.); (N.N.M.)
| | - Konstantin A. Monogarov
- Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, 4 Kosygina Str., 119991 Moscow, Russia; (K.A.M.); (D.B.M.); (I.N.M.); (A.N.P.); (V.G.K.)
| | - Dmitry B. Meerov
- Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, 4 Kosygina Str., 119991 Moscow, Russia; (K.A.M.); (D.B.M.); (I.N.M.); (A.N.P.); (V.G.K.)
| | - Igor N. Melnikov
- Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, 4 Kosygina Str., 119991 Moscow, Russia; (K.A.M.); (D.B.M.); (I.N.M.); (A.N.P.); (V.G.K.)
| | - Alla N. Pivkina
- Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, 4 Kosygina Str., 119991 Moscow, Russia; (K.A.M.); (D.B.M.); (I.N.M.); (A.N.P.); (V.G.K.)
| | - Vitaly G. Kiselev
- Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, 4 Kosygina Str., 119991 Moscow, Russia; (K.A.M.); (D.B.M.); (I.N.M.); (A.N.P.); (V.G.K.)
- Novosibirsk State University, 1 Pirogova Str., 630090 Novosibirsk, Russia
- Institute of Chemical Kinetics and Combustion SB RAS, 3 Institutskaya Str., 630090 Novosibirsk, Russia
| | - Nikita V. Muravyev
- Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, 4 Kosygina Str., 119991 Moscow, Russia; (K.A.M.); (D.B.M.); (I.N.M.); (A.N.P.); (V.G.K.)
- Correspondence: ; Tel.: +7-499-137-8203
| |
Collapse
|
7
|
The equilibrium molecular structure of 3-methyl-4-nitro- and 4-methyl-3-nitrofuroxans by gas-phase electron diffraction and coupled cluster calculations. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2020.128856] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
8
|
Zhang J, Zhou J, Bi F, Wang B. Energetic materials based on poly furazan and furoxan structures. CHINESE CHEM LETT 2020. [DOI: 10.1016/j.cclet.2020.01.026] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
9
|
Makhova NN, Belen’kii LI, Gazieva GA, Dalinger IL, Konstantinova LS, Kuznetsov VV, Kravchenko AN, Krayushkin MM, Rakitin OA, Starosotnikov AM, Fershtat LL, Shevelev SA, Shirinian VZ, Yarovenko VN. Progress in the chemistry of nitrogen-, oxygen- and sulfur-containing heterocyclic systems. RUSSIAN CHEMICAL REVIEWS 2020. [DOI: 10.1070/rcr4914] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
10
|
Zlotin SG, Dalinger IL, Makhova NN, Tartakovsky VA. Nitro compounds as the core structures of promising energetic materials and versatile reagents for organic synthesis. RUSSIAN CHEMICAL REVIEWS 2020. [DOI: 10.1070/rcr4908] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
This review addresses some promising areas of chemistry of nitro compounds extensively developed in recent years in Russia (particularly at the N.D.Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences) and worldwide. The most important results in the synthesis of novel energetic N-, C- and O-nitro compounds are summarized. New environmentally friendly approaches to the preparation of known compounds of this series, used as components of energetic compositions, are considered. Methods for selective transformations of various nitro compounds to valuable products of organic synthesis, primarily biologically active products and their precursors, are systematically analyzed.
The bibliography includes 446 references.
Collapse
|
11
|
Fershtat LL, Makhova NN. 1,2,5‐Oxadiazole‐Based High‐Energy‐Density Materials: Synthesis and Performance. Chempluschem 2019. [DOI: 10.1002/cplu.201900542] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Leonid L. Fershtat
- N. D. Zelinsky Institute of Organic Chemistry Russian Academy of Sciences 119991, Leninsky Prospect, 47 Moscow Russia
| | - Nina N. Makhova
- N. D. Zelinsky Institute of Organic Chemistry Russian Academy of Sciences 119991, Leninsky Prospect, 47 Moscow Russia
| |
Collapse
|
12
|
Zhilin ES, Fershtat LL, Bystrov DM, Kulikov AS, Dmitrienko AO, Ananyev IV, Makhova NN. Renaissance of 1,2,5-Oxadiazolyl Diazonium Salts: Synthesis and Reactivity. European J Org Chem 2019. [DOI: 10.1002/ejoc.201900622] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Egor S. Zhilin
- N.D. Zelinsky Institute of Organic Chemistry; Russian Academy of Sciences; Leninsky Prospect, 47 119991 Moscow Russia
| | - Leonid L. Fershtat
- N.D. Zelinsky Institute of Organic Chemistry; Russian Academy of Sciences; Leninsky Prospect, 47 119991 Moscow Russia
| | - Dmitry M. Bystrov
- N.D. Zelinsky Institute of Organic Chemistry; Russian Academy of Sciences; Leninsky Prospect, 47 119991 Moscow Russia
| | - Alexander S. Kulikov
- N.D. Zelinsky Institute of Organic Chemistry; Russian Academy of Sciences; Leninsky Prospect, 47 119991 Moscow Russia
| | - Artem O. Dmitrienko
- A. N. Nesmeyanov Institute of Organoelement Compounds; Russian Academy of Sciences; Vavilova str., 28 119991 Moscow Russia
| | - Ivan V. Ananyev
- A. N. Nesmeyanov Institute of Organoelement Compounds; Russian Academy of Sciences; Vavilova str., 28 119991 Moscow Russia
| | - Nina N. Makhova
- N.D. Zelinsky Institute of Organic Chemistry; Russian Academy of Sciences; Leninsky Prospect, 47 119991 Moscow Russia
| |
Collapse
|
13
|
Synthesis of new pharmacologically oriented heterocyclic ensembles, [2-(1H-pyrazol-1-yl)thiazol-4-yl]furoxans. MENDELEEV COMMUNICATIONS 2019. [DOI: 10.1016/j.mencom.2019.05.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
14
|
Larin AA, Muravyev NV, Pivkina AN, Suponitsky KY, Ananyev IV, Khakimov DV, Fershtat LL, Makhova NN. Assembly of Tetrazolylfuroxan Organic Salts: Multipurpose Green Energetic Materials with High Enthalpies of Formation and Excellent Detonation Performance. Chemistry 2019; 25:4225-4233. [DOI: 10.1002/chem.201806378] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Indexed: 11/09/2022]
Affiliation(s)
- Alexander A. Larin
- N. D. Zelinsky Institute of Organic ChemistryRussian Academy of Sciences 119991 Leninsky Prospect 47 Moscow Russia
| | - Nikita V. Muravyev
- N. N. Semenov Institute of Chemical PhysicsRussian Academy of Sciences 119991 Kosygin str. 4 Moscow Russia
| | - Alla N. Pivkina
- N. N. Semenov Institute of Chemical PhysicsRussian Academy of Sciences 119991 Kosygin str. 4 Moscow Russia
| | - Kyrill Yu. Suponitsky
- A. N. Nesmeyanov Institute of Organoelement CompoundsRussian Academy of Sciences 119991 Vavilova str. 28 Moscow Russia
- Plekhanov Russian University of Economics 117997 Stremyanny per. 36 Moscow Russia
| | - Ivan V. Ananyev
- A. N. Nesmeyanov Institute of Organoelement CompoundsRussian Academy of Sciences 119991 Vavilova str. 28 Moscow Russia
| | - Dmitry V. Khakimov
- N. D. Zelinsky Institute of Organic ChemistryRussian Academy of Sciences 119991 Leninsky Prospect 47 Moscow Russia
- Federal State Unitary Enterprise “Keldysh Research Center” 125438 Onezhskaya Str. 8 Moscow Russia
| | - Leonid L. Fershtat
- N. D. Zelinsky Institute of Organic ChemistryRussian Academy of Sciences 119991 Leninsky Prospect 47 Moscow Russia
| | - Nina N. Makhova
- N. D. Zelinsky Institute of Organic ChemistryRussian Academy of Sciences 119991 Leninsky Prospect 47 Moscow Russia
| |
Collapse
|
15
|
Synthesis and structural investigation of 4,4′-dimethyl-[3,3′-bi(1,2,5-oxadiazole)] 5,5′-dioxide. Russ Chem Bull 2018. [DOI: 10.1007/s11172-018-2326-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
16
|
Kulikov AS, Epishina MA, Churakov AI, Anikina LV, Fershtat LL, Makhova NN. Regioselective synthesis, structural diversification and cytotoxic activity of (thiazol-4-yl)furoxans. MENDELEEV COMMUNICATIONS 2018. [DOI: 10.1016/j.mencom.2018.11.020] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
17
|
Bystrov DM, Zhilin ES, Fershtat LL, Romanova AA, Ananyev IV, Makhova NN. Tandem Condensation/Rearrangement Reaction of 2-AminohetareneN-Oxides for the Synthesis of Hetaryl Carbamates. Adv Synth Catal 2018. [DOI: 10.1002/adsc.201800407] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Dmitry M. Bystrov
- N. D. Zelinsky Institute of Organic Chemistry; Russian Academy of Sciences; 119991 Moscow Russian Federation
- Department of Chemistry; Moscow State University; 119991 Moscow Leninskie Gory 1-3 Russian Federation
| | - Egor S. Zhilin
- N. D. Zelinsky Institute of Organic Chemistry; Russian Academy of Sciences; 119991 Moscow Russian Federation
- Department of Chemistry; Moscow State University; 119991 Moscow Leninskie Gory 1-3 Russian Federation
| | - Leonid L. Fershtat
- N. D. Zelinsky Institute of Organic Chemistry; Russian Academy of Sciences; 119991 Moscow Russian Federation
| | - Anna A. Romanova
- A. N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences; 28 Vavilova str. 119991 Moscow Russian Federation
- D. Mendeleev University of Chemical Technology of Russia, Higher Chemical College; Miusskaya sq. 9 125047 Moscow Russian Federation
| | - Ivan V. Ananyev
- A. N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences; 28 Vavilova str. 119991 Moscow Russian Federation
| | - Nina N. Makhova
- N. D. Zelinsky Institute of Organic Chemistry; Russian Academy of Sciences; 119991 Moscow Russian Federation
| |
Collapse
|
18
|
Makhova NN, Fershtat LL. Recent advances in the synthesis and functionalization of 1,2,5-oxadiazole 2-oxides. Tetrahedron Lett 2018. [DOI: 10.1016/j.tetlet.2018.04.070] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
19
|
Nitro derivatives of 2,1,3-benzothiadiazole 1-oxides: synthesis, structural study, and NO release. Russ Chem Bull 2018. [DOI: 10.1007/s11172-018-2042-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
20
|
Vereshchagin AN. Classical and interdisciplinary approaches to the design of organic and hybrid molecular systems. Russ Chem Bull 2018. [DOI: 10.1007/s11172-017-1950-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
21
|
Zlotin SG, Churakov AM, Dalinger IL, Luk’yanov OA, Makhova NN, Sukhorukov AY, Tartakovsky VA. Recent advances in synthesis of organic nitrogen–oxygen systems for medicine and materials science. MENDELEEV COMMUNICATIONS 2017. [DOI: 10.1016/j.mencom.2017.11.001] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
22
|
Larin AA, Fershtat LL, Ananyev IV, Makhova NN. Versatile approach to heteroarylfuroxan derivatives from oximinofuroxans via a one-pot, nitration/thermolysis/[3+2]-cycloaddition cascade. Tetrahedron Lett 2017. [DOI: 10.1016/j.tetlet.2017.09.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
23
|
Kulikov AS, Epishina MA, Fershtat LL, Romanova AA, Makhova NN. Effective synthesis of 6-substituted 7H-tetrazolo[5,1-b][1,3,4]thiadiazines via a one-pot condensation/nitrosation/azide-tetrazole tautomerism reaction sequence. Tetrahedron Lett 2017. [DOI: 10.1016/j.tetlet.2017.09.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
24
|
Bis[1,2,5]oxadiazolo[3,4- c :3’,4’- e ]pyridazine 4,5-dioxide as a synthetic equivalent of 4,4’-dinitroso-3,3’-bifurazan. MENDELEEV COMMUNICATIONS 2017. [DOI: 10.1016/j.mencom.2017.09.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
25
|
Ananikov VP, Eremin DB, Yakukhnov SA, Dilman AD, Levin VV, Egorov MP, Karlov SS, Kustov LM, Tarasov AL, Greish AA, Shesterkina AA, Sakharov AM, Nysenko ZN, Sheremetev AB, Stakheev AY, Mashkovsky IS, Sukhorukov AY, Ioffe SL, Terent’ev AO, Vil’ VA, Tomilov YV, Novikov RA, Zlotin SG, Kucherenko AS, Ustyuzhanina NE, Krylov VB, Tsvetkov YE, Gening ML, Nifantiev NE. Organic and hybrid systems: from science to practice. MENDELEEV COMMUNICATIONS 2017. [DOI: 10.1016/j.mencom.2017.09.001] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
26
|
Fershtat LL, Ovchinnikov IV, Epishina MA, Romanova AA, Lempert DB, Muravyev NV, Makhova NN. Assembly of Nitrofurazan and Nitrofuroxan Frameworks for High-Performance Energetic Materials. Chempluschem 2017; 82:1315-1319. [DOI: 10.1002/cplu.201700340] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Indexed: 11/11/2022]
Affiliation(s)
- Leonid L. Fershtat
- N. D. Zelinsky Institute of Organic Chemistry; Russian Academy of Sciences; Leninsky Prospect 47 Moscow 119991 Russian Federation
| | - Igor V. Ovchinnikov
- N. D. Zelinsky Institute of Organic Chemistry; Russian Academy of Sciences; Leninsky Prospect 47 Moscow 119991 Russian Federation
| | - Margarita A. Epishina
- N. D. Zelinsky Institute of Organic Chemistry; Russian Academy of Sciences; Leninsky Prospect 47 Moscow 119991 Russian Federation
| | - Anna A. Romanova
- A. N. Nesmeyanov Institute of Organoelement Compounds; Russian Academy of Sciences; 28 Vavilova Street Moscow 119991 Russian Federation
- Higher Chemical College; Russian Academy of Sciences; 9 Miusskaya Square Moscow 125047 Russian Federation
| | - David B. Lempert
- Institute of Problems of Chemical Physics; Russian Academy of Sciences; 1 Academician Semenov Avenue Chernogolovka Moscow Region 142432 Russian Federation
| | - Nikita V. Muravyev
- N. N. Semenov Institute of Chemical Physics; Russian Academy of Sciences; 4 Kosygin Street Moscow 119991 Russian Federation
| | - Nina N. Makhova
- N. D. Zelinsky Institute of Organic Chemistry; Russian Academy of Sciences; Leninsky Prospect 47 Moscow 119991 Russian Federation
| |
Collapse
|
27
|
Matsubara R, Ando A, Hayashi M. Synthesis of cyanofuroxans from 4-nitrofuroxans via C C bond forming reactions. Tetrahedron Lett 2017. [DOI: 10.1016/j.tetlet.2017.07.015] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
28
|
Fershtat LL, Makhova NN. Molecular Hybridization Tools in the Development of Furoxan-Based NO-Donor Prodrugs. ChemMedChem 2017; 12:622-638. [DOI: 10.1002/cmdc.201700113] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Revised: 03/27/2017] [Indexed: 11/08/2022]
Affiliation(s)
- Leonid L. Fershtat
- N. D. Zelinsky Institute of Organic Chemistry; Russian Academy of Sciences; Leninsky Prosp. 47 Moscow 119991 Russian Federation
| | - Nina N. Makhova
- N. D. Zelinsky Institute of Organic Chemistry; Russian Academy of Sciences; Leninsky Prosp. 47 Moscow 119991 Russian Federation
| |
Collapse
|
29
|
|