1
|
Sharma A, Whittington C, Jabed M, Hill SG, Kostenko A, Yu T, Li P, Doan PE, Hoffman BM, Offenbacher AR. 13C Electron Nuclear Double Resonance Spectroscopy-Guided Molecular Dynamics Computations Reveal the Structure of the Enzyme-Substrate Complex of an Active, N-Linked Glycosylated Lipoxygenase. Biochemistry 2023; 62:1531-1543. [PMID: 37115010 PMCID: PMC10704959 DOI: 10.1021/acs.biochem.3c00119] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/29/2023]
Abstract
Lipoxygenase (LOX) enzymes produce important cell-signaling mediators, yet attempts to capture and characterize LOX-substrate complexes by X-ray co-crystallography are commonly unsuccessful, requiring development of alternative structural methods. We previously reported the structure of the complex of soybean lipoxygenase, SLO, with substrate linoleic acid (LA), as visualized through the integration of 13C/1H electron nuclear double resonance (ENDOR) spectroscopy and molecular dynamics (MD) computations. However, this required substitution of the catalytic mononuclear, nonheme iron by the structurally faithful, yet inactive Mn2+ ion as a spin probe. Unlike canonical Fe-LOXs from plants and animals, LOXs from pathogenic fungi contain active mononuclear Mn2+ metallocenters. Here, we report the ground-state active-site structure of the native, fully glycosylated fungal LOX from rice blast pathogen Magnaporthe oryzae, MoLOX complexed with LA, as obtained through the 13C/1H ENDOR-guided MD approach. The catalytically important distance between the hydrogen donor, carbon-11 (C11), and the acceptor, Mn-bound oxygen, (donor-acceptor distance, DAD) for the MoLOX-LA complex derived in this fashion is 3.4 ± 0.1 Å. The difference of the MoLOX-LA DAD from that of the SLO-LA complex, 3.1 ± 0.1 Å, is functionally important, although is only 0.3 Å, despite the MoLOX complex having a Mn-C11 distance of 5.4 Å and a "carboxylate-out" substrate-binding orientation, whereas the SLO complex has a 4.9 Å Mn-C11 distance and a "carboxylate-in" substrate orientation. The results provide structural insights into reactivity differences across the LOX family, give a foundation for guiding development of MoLOX inhibitors, and highlight the robustness of the ENDOR-guided MD approach to describe LOX-substrate structures.
Collapse
Affiliation(s)
- Ajay Sharma
- Department of Chemistry, Northwestern University, Evanston, IL 60208, United States
| | - Chris Whittington
- Department of Chemistry, East Carolina University, Greenville, NC 27858, United States
| | - Mohammed Jabed
- Department of Chemistry, University of North Dakota, Grand Forks, ND 58202, United States
| | - S. Gage Hill
- Department of Chemistry, East Carolina University, Greenville, NC 27858, United States
| | - Anastasiia Kostenko
- Department of Chemistry, East Carolina University, Greenville, NC 27858, United States
| | - Tao Yu
- Department of Chemistry, University of North Dakota, Grand Forks, ND 58202, United States
| | - Pengfei Li
- Department of Chemistry and Biochemistry, Loyola University Chicago, Chicago, IL 60660, United States
| | - Peter E. Doan
- Department of Chemistry, Northwestern University, Evanston, IL 60208, United States
| | - Brian M. Hoffman
- Department of Chemistry, Northwestern University, Evanston, IL 60208, United States
| | - Adam R. Offenbacher
- Department of Chemistry, East Carolina University, Greenville, NC 27858, United States
| |
Collapse
|
2
|
Moir M, Yepuri N, Marshall D, Blanksby S, Darwish T. Synthesis of Perdeuterated Linoleic Acid‐d31 and Chain Deuterated 1‐Palmitoyl‐2‐linoleoyl‐sn‐glycero‐3‐phosphocholine‐d62. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202200616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Michael Moir
- Australian Nuclear Science and Technology Organisation AUSTRALIA
| | - Nageshwar Yepuri
- Australian Nuclear Science and Technology Organisation AUSTRALIA
| | | | | | - Tamim Darwish
- Australian Nuclear Science and Technology Organisation AUSTRALIA
| |
Collapse
|
3
|
Offenbacher AR, Iavarone AT, Klinman JP. Hydrogen-deuterium exchange reveals long-range dynamical allostery in soybean lipoxygenase. J Biol Chem 2018; 293:1138-1148. [PMID: 29191828 PMCID: PMC5787793 DOI: 10.1074/jbc.m117.817197] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Revised: 11/28/2017] [Indexed: 11/06/2022] Open
Abstract
In lipoxygenases, the topologically conserved C-terminal domain catalyzes the oxidation of polyunsaturated fatty acids, generating an assortment of biologically relevant signaling mediators. Plant and animal lipoxygenases also contain a 100-150-amino acid N-terminal C2-like domain that has been implicated in interactions with isolated fatty acids and at the phospholipid bilayer. These interactions may lead to increased substrate availability and contribute to the regulation of active-site catalysis. Because of a lack of structural information, a molecular understanding of this lipid-protein interaction remains unresolved. Herein, we employed hydrogen-deuterium exchange MS (HDXMS) to spatially resolve changes in protein conformation upon interaction of soybean lipoxygenase with a fatty acid surrogate, oleyl sulfate (OS), previously shown to act at a site separate from the substrate-binding site. Specific, OS-induced conformational changes are detected both at the N-terminal domain and within the substrate portal nearly 30 Å away. Combining previously measured kinetic properties in the presence of OS with its impact on the Kd for linoleic acid substrate binding, we conclude that OS binding brings about an increase in rate constants for both the ingress and egress of substrate. We discuss the role of OS-induced changes in protein flexibility in the context of changes in the mechanism of substrate acquisition.
Collapse
Affiliation(s)
- Adam R Offenbacher
- From the Department of Chemistry, California Institute for Quantitative Biosciences (QB3), and
| | - Anthony T Iavarone
- From the Department of Chemistry, California Institute for Quantitative Biosciences (QB3), and
| | - Judith P Klinman
- From the Department of Chemistry, California Institute for Quantitative Biosciences (QB3), and
- Department of Molecular and Cell Biology, University of California, Berkeley, California 94720
| |
Collapse
|
4
|
Tokunaga T, Watanabe B, Sato S, Kawamoto J, Kurihara T. Synthesis and Functional Assessment of a Novel Fatty Acid Probe, ω-Ethynyl Eicosapentaenoic Acid Analog, to Analyze the in Vivo Behavior of Eicosapentaenoic Acid. Bioconjug Chem 2017; 28:2077-2085. [PMID: 28682621 DOI: 10.1021/acs.bioconjchem.7b00235] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Eicosapentaenoic acid (EPA) is an ω-3 polyunsaturated fatty acid that plays various beneficial roles in organisms from bacteria to humans. Although its beneficial physiological functions are well-recognized, a molecular probe that enables the monitoring of its in vivo behavior without abolishing its native functions has not yet been developed. Here, we designed and synthesized an ω-ethynyl EPA analog (eEPA) as a tool for analyzing the in vivo behavior and function of EPA. eEPA has an ω-ethynyl group tag in place of the ω-methyl group of EPA. An ethynyl group has a characteristic Raman signal and can be visualized by Raman scattering microscopy. Moreover, this group can specifically react in situ with azide compounds, such as those with fluorescent group, via click chemistry. In this study, we first synthesized eEPA efficiently based on the following well-known strategies. To introduce four C-C double bonds, a coupling reaction between terminal acetylene and propargylic halide or tosylate was employed, and then, by simultaneous and stereoselective partial hydrogenation with P-2 nickel, the triple bonds were converted to cis double bonds. One double bond and an ω-terminal C-C triple bond were introduced by Wittig reaction with a phosphonium salt harboring an ethynyl group. Then, we evaluated the in vivo function of the resulting probe by using an EPA-producing bacterium, Shewanella livingstonensis Ac10. This cold-adapted bacterium inducibly produces EPA at low temperatures, and the EPA-deficient mutant (ΔEPA) shows growth retardation and abnormal morphology at low temperatures. When eEPA was exogenously supplemented to ΔEPA, eEPA was incorporated into the membrane phospholipids as an acyl chain, and the amount of eEPA was about 5% of the total fatty acids in the membrane, which is comparable to the amount of EPA in the membrane of the parent strain. Notably, by supplementation with eEPA, the growth retardation and abnormal morphology of ΔEPA were almost completely suppressed. These results indicated that eEPA mimics EPA well and is useful for analyzing the in vivo behavior of EPA.
Collapse
Affiliation(s)
- Tomohisa Tokunaga
- Institute for Chemical Research, Kyoto University , Uji, Kyoto 611-0011, Japan
| | - Bunta Watanabe
- Institute for Chemical Research, Kyoto University , Uji, Kyoto 611-0011, Japan
| | - Sho Sato
- Institute for Chemical Research, Kyoto University , Uji, Kyoto 611-0011, Japan
| | - Jun Kawamoto
- Institute for Chemical Research, Kyoto University , Uji, Kyoto 611-0011, Japan
| | - Tatsuo Kurihara
- Institute for Chemical Research, Kyoto University , Uji, Kyoto 611-0011, Japan
| |
Collapse
|
5
|
Horitani M, Offenbacher AR, Carr CAM, Yu T, Hoeke V, Cutsail GE, Hammes-Schiffer S, Klinman JP, Hoffman BM. 13C ENDOR Spectroscopy of Lipoxygenase-Substrate Complexes Reveals the Structural Basis for C-H Activation by Tunneling. J Am Chem Soc 2017; 139:1984-1997. [PMID: 28121140 PMCID: PMC5322796 DOI: 10.1021/jacs.6b11856] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Indexed: 12/20/2022]
Abstract
In enzymatic C-H activation by hydrogen tunneling, reduced barrier width is important for efficient hydrogen wave function overlap during catalysis. For native enzymes displaying nonadiabatic tunneling, the dominant reactive hydrogen donor-acceptor distance (DAD) is typically ca. 2.7 Å, considerably shorter than normal van der Waals distances. Without a ground state substrate-bound structure for the prototypical nonadiabatic tunneling system, soybean lipoxygenase (SLO), it has remained unclear whether the requisite close tunneling distance occurs through an unusual ground state active site arrangement or by thermally sampling conformational substates. Herein, we introduce Mn2+ as a spin-probe surrogate for the SLO Fe ion; X-ray diffraction shows Mn-SLO is structurally faithful to the native enzyme. 13C ENDOR then reveals the locations of 13C10 and reactive 13C11 of linoleic acid relative to the metal; 1H ENDOR and molecular dynamics simulations of the fully solvated SLO model using ENDOR-derived restraints give additional metrical information. The resulting three-dimensional representation of the SLO active site ground state contains a reactive (a) conformer with hydrogen DAD of ∼3.1 Å, approximately van der Waals contact, plus an inactive (b) conformer with even longer DAD, establishing that stochastic conformational sampling is required to achieve reactive tunneling geometries. Tunneling-impaired SLO variants show increased DADs and variations in substrate positioning and rigidity, confirming previous kinetic and theoretical predictions of such behavior. Overall, this investigation highlights the (i) predictive power of nonadiabatic quantum treatments of proton-coupled electron transfer in SLO and (ii) sensitivity of ENDOR probes to test, detect, and corroborate kinetically predicted trends in active site reactivity and to reveal unexpected features of active site architecture.
Collapse
Affiliation(s)
- Masaki Horitani
- Department
of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Adam R. Offenbacher
- Department of Chemistry and California Institute for Quantitative
Biosciences (QB3), Department of Molecular and Cell Biology, University of California, Berkeley, California 94720, United States
| | - Cody A. Marcus Carr
- Department of Chemistry and California Institute for Quantitative
Biosciences (QB3), Department of Molecular and Cell Biology, University of California, Berkeley, California 94720, United States
| | - Tao Yu
- Department
of Chemistry, University of Illinois at
Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Veronika Hoeke
- Department
of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - George E. Cutsail
- Department
of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Sharon Hammes-Schiffer
- Department
of Chemistry, University of Illinois at
Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Judith P. Klinman
- Department of Chemistry and California Institute for Quantitative
Biosciences (QB3), Department of Molecular and Cell Biology, University of California, Berkeley, California 94720, United States
| | - Brian M. Hoffman
- Department
of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| |
Collapse
|