1
|
A simple symmetric N1, N2-bis 3-nitrobenzylidene fluorescent probe for Fe3+ ion: experimental and theoretical investigations. JOURNAL OF THE IRANIAN CHEMICAL SOCIETY 2022. [DOI: 10.1007/s13738-022-02720-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
2
|
Colorimetric and fluorogenic detection of nitrite anion in water and food based on Griess reaction of fluorene derivatives. J Food Compost Anal 2022. [DOI: 10.1016/j.jfca.2022.105123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
3
|
Mechanochromic and AIE active fluorescent probes for solution and vapor phase detection of picric acid: Application of logic gate. J Photochem Photobiol A Chem 2022. [DOI: 10.1016/j.jphotochem.2022.114057] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
4
|
Khan NA, Waheed S, Junaid HM, Hamad A, Imran M, Shah SH, Khan GS, Shahzad SA. Ultra-Sensitive Fluorescent and Colorimetric Probes for Femtomolar Detection of Picric Acid: Mechanochromic, Latent Fingerprinting, and pH Responsive Character with AIE Properties. J Photochem Photobiol A Chem 2022. [DOI: 10.1016/j.jphotochem.2022.114318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
5
|
Synthesis of AIEE active triazine based new fluorescent and colorimetric probes: A reversible mechanochromism and sequential detection of picric acid and ciprofloxacin. J Photochem Photobiol A Chem 2022. [DOI: 10.1016/j.jphotochem.2022.113921] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
6
|
Hussain S, Muhammad Junaid H, Tahir Waseem M, Rauf W, Jabbar Shaikh A, Anjum Shahzad S. Aggregation-Induced Emission of Quinoline Based Fluorescent and Colorimetric Sensors for Rapid Detection of Fe 3+ and 4-Nitrophenol in Aqueous Medium. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 272:121021. [PMID: 35180483 DOI: 10.1016/j.saa.2022.121021] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 02/03/2022] [Accepted: 02/07/2022] [Indexed: 05/14/2023]
Abstract
New quinoline based fluorescent sensors 4 and 5 were rationally synthesized that exhibited excellent aggregation induced emission (AIE) in an aqueous medium. High fluorescence emission of sensors was accompanied by a noticeable redshift in their absorption and emission spectra that corresponds to the formation of J-aggregates. An AIE feature of sensors 4 and 5 was used for selective detection of Fe3+ and 4-NP in an aqueous medium that is attributed to the involvement of intermolecular charge transfer (ICT). The interaction mechanism of sensors with Fe3+ and 4-NP was investigated through 1H NMR titration, Jobs plots, dynamic light scattering (DLS), and DFT analysis. The fluorescence quenching response of sensors 4 and 5 displayed distinguished linear behavior with the concentrations of Fe3+ and limits of detection (LOD) were calculated to be 15 and 10 nM, respectively. Further, LOD of sensors 4 and 5 for 4-NP (7.3 and 4.1 nM, respectively) was very low compared to previously reported sensors. Moreover, sensors' coated test strips were fabricated for solid-supported detection of Fe3+ and 4-NP. Sensors were successfully applied for the detection and quantification of Fe3+ and 4-NP in real water samples. Additionally, sensors were used for the determination of trace amounts of Fe3+ in the human serum sample.
Collapse
Affiliation(s)
- Saddam Hussain
- Department of Chemistry, COMSATS University Islamabad, Abbottabad Campus, Abbottabad 22060, Pakistan
| | - Hafiz Muhammad Junaid
- Department of Chemistry, COMSATS University Islamabad, Abbottabad Campus, Abbottabad 22060, Pakistan
| | - Muhammad Tahir Waseem
- Department of Chemistry, COMSATS University Islamabad, Abbottabad Campus, Abbottabad 22060, Pakistan
| | - Waqar Rauf
- Pakistan Institute of Engineering and Applied Sciences, Health Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE-C, PIEAS), Faisalabad 38000, Pakistan
| | - Ahson Jabbar Shaikh
- Department of Chemistry, COMSATS University Islamabad, Abbottabad Campus, Abbottabad 22060, Pakistan
| | - Sohail Anjum Shahzad
- Department of Chemistry, COMSATS University Islamabad, Abbottabad Campus, Abbottabad 22060, Pakistan.
| |
Collapse
|
7
|
Ilyas Q, Waseem MT, Junaid HM, Ali Khan Z, Munir F, Shaikh AJ, Shahzad SA. Fluorescein based fluorescent and colorimetric sensors for sensitive detection of TNP explosive in aqueous medium: Application of logic gate. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 272:120994. [PMID: 35176646 DOI: 10.1016/j.saa.2022.120994] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 01/19/2022] [Accepted: 02/01/2022] [Indexed: 05/14/2023]
Abstract
Rapid detection of 2,4,6-trinitrophenol (TNP) in real samples has recently attained considerable attention from the perspective of national security, human health, and environmental safety. In this context, cost-effective and convenient detection of TNP explosive was accomplished through two new fluorescein based sensors F2 and F3. Sensors displayed effective fluorescence quenching response towards TNP in the aqueous medium. Highly sensitive fluorescence detection of TNP explosive (detection limit, 0.73 (F2) and 1.7 nM (F3)) was governed by ground-state charge transfer complex formation, facilitated by favorable H-bonding between sensor and TNP explosive. Fluorescence quenching mechanism for the detection of TNP explosive was investigated through UV-Visible absorption, dynamic light scattering (DLS), density functional theory (DFT) calculations, the Benesi-Hildebrand, and Job's plots. Advantageously, sensors displayed selective and immediate colorimetric recognition of TNP explosive. Importantly, sensors exhibited quick response time towards TNP even in the presence of potential interferences that make them highly suitable for practical applications. Sensors were successfully applied for fluorescent and colorimetric detection of TNP explosive in industrial water samples and fabrication of logic gates. Further, convenient contact mode and instant surface sensing of TNP explosive were achieved through the fabrication of fluorescent strips and explosive responsive test kits.
Collapse
Affiliation(s)
- Qanita Ilyas
- Department of Chemistry, COMSATS University Islamabad, Abbottabad Campus, Abbottabad 22060, Pakistan
| | - Muhammad Tahir Waseem
- Department of Chemistry, COMSATS University Islamabad, Abbottabad Campus, Abbottabad 22060, Pakistan
| | - Hafiz Muhammad Junaid
- Department of Chemistry, COMSATS University Islamabad, Abbottabad Campus, Abbottabad 22060, Pakistan
| | - Zulfiqar Ali Khan
- Department of Chemistry, Government College University, Faisalabad 38000, Pakistan
| | - Farhan Munir
- Department of Chemistry, COMSATS University Islamabad, Abbottabad Campus, Abbottabad 22060, Pakistan
| | - Ahson Jabbar Shaikh
- Department of Chemistry, COMSATS University Islamabad, Abbottabad Campus, Abbottabad 22060, Pakistan
| | - Sohail Anjum Shahzad
- Department of Chemistry, COMSATS University Islamabad, Abbottabad Campus, Abbottabad 22060, Pakistan.
| |
Collapse
|
8
|
AIEE active new fluorescent and colorimetric probes for solution and vapor phase detection of Nitrobenzene: A reversible mechanochromism and application of logic gate. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107227] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
9
|
Tahir Waseem M, Muhammad Junaid H, Gul H, Ali Khan Z, Yu C, Anjum Shahzad S. Fluorene based fluorescent and colorimetric sensors for ultrasensitive detection of nitroaromatics in aqueous medium. J Photochem Photobiol A Chem 2022. [DOI: 10.1016/j.jphotochem.2021.113660] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
10
|
Batool R, Riaz N, Junaid HM, Waseem MT, Khan ZA, Nawazish S, Farooq U, Yu C, Shahzad SA. Fluorene-Based Fluorometric and Colorimetric Conjugated Polymers for Sensitive Detection of 2,4,6-Trinitrophenol Explosive in Aqueous Medium. ACS OMEGA 2022; 7:1057-1070. [PMID: 35036769 PMCID: PMC8757457 DOI: 10.1021/acsomega.1c05644] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Accepted: 12/20/2021] [Indexed: 05/19/2023]
Abstract
Nitroaromatic explosives are a class of compounds that are responsible for various health hazards and terrorist outrages. Among these, sensitive detection of 2,4,6-trinitrophenol (TNP) explosive has always been highly desirable considering public health and national security. In this regard, three fluorene-based conjugated polymers (CP 1, CP 2, and CP 3) were synthesized through the Suzuki-Miyaura coupling reaction and were found to be highly sensitive for fluorescence detection of TNP with detection limits of 3.2, 5.7, and 6.1 pM, respectively. Excellent selectivity of CPs toward TNP was attributed to their unique π-π interactions based on fluorescence studies and density functional theory (DFT) calculations. The high sensitivity of CPs to TNP was attributed to the static quenching mechanism based on the photoinduced electron transfer process and was evaluated by fluorescence, UV-visible absorption, dynamic light scattering, Job's plots, the Benesi-Hildebrand plots, and DFT calculations. CPs were also used for colorimetric and real-water sample analysis for the detection of TNP explosive. Meanwhile, sensor-coated test strips were fabricated for on-site detection of TNP, which makes them convenient solid-supported sensors.
Collapse
Affiliation(s)
- Razia Batool
- Department
of Chemistry, COMSATS University Islamabad, Abbottabad Campus, Abbottabad 22060, Pakistan
| | - Noreen Riaz
- Department
of Chemistry, COMSATS University Islamabad, Abbottabad Campus, Abbottabad 22060, Pakistan
| | - Hafiz Muhammad Junaid
- Department
of Chemistry, COMSATS University Islamabad, Abbottabad Campus, Abbottabad 22060, Pakistan
| | - Muhammad Tahir Waseem
- Department
of Chemistry, COMSATS University Islamabad, Abbottabad Campus, Abbottabad 22060, Pakistan
| | - Zulfiqar Ali Khan
- Department
of Chemistry, Government College University, Faisalabad 38000, Pakistan
| | - Shamyla Nawazish
- Department
of Environmental Sciences, COMSATS University
Islamabad, Abbottabad Campus, Abbottabad 22060, Pakistan
| | - Umar Farooq
- Department
of Chemistry, COMSATS University Islamabad, Abbottabad Campus, Abbottabad 22060, Pakistan
| | - Cong Yu
- State
Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P.R. China
- University
of Science and Technology of China, Hefei 230026, P.R. China
| | - Sohail Anjum Shahzad
- Department
of Chemistry, COMSATS University Islamabad, Abbottabad Campus, Abbottabad 22060, Pakistan
| |
Collapse
|
11
|
Bag SS, Gogoi H, Sinha S. Synthesis and studies on the photophysical/biophysical properties of triazolylfluorene-labeled 2′-deoxyuridines. Tetrahedron Lett 2021. [DOI: 10.1016/j.tetlet.2021.153494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
12
|
Zhou XY, Hui TQ, Han YY, Huang XT, Jiang XN, Liu C, Yan J. Novel Fluorene-based compounds: Investigation on the synthesis, function and fluorescence mechanism. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.130185] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
13
|
Wang C, You ZX, Xing YH, Bai FY, Shi Z. A three-dimensional supramolecular network structure through hydrogen bonding and π–π interaction: synthesis, structure, and the fluorescence detection of balsalazide disodium. CrystEngComm 2021. [DOI: 10.1039/d1ce00373a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Three co-crystal compounds with different dimensions were synthesized. The fluorescence properties of co-crystal 1 were studied, especially detecting balsalazide disodium.
Collapse
Affiliation(s)
- Chen Wang
- College of Chemistry and Chemical Engineering
- Liaoning Normal University
- Dalian 116029
- P. R. China
| | - Zi Xin You
- College of Chemistry and Chemical Engineering
- Liaoning Normal University
- Dalian 116029
- P. R. China
| | - Yong-Heng Xing
- College of Chemistry and Chemical Engineering
- Liaoning Normal University
- Dalian 116029
- P. R. China
| | - Feng-Ying Bai
- College of Chemistry and Chemical Engineering
- Liaoning Normal University
- Dalian 116029
- P. R. China
| | - Zhan Shi
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry
- College of Chemistry
- Jilin University
- Changchun 130012
- P. R. China
| |
Collapse
|
14
|
Harmalkar SS, Naik AV, Nilajakar MK, Dhuri SN. Chemoselective Detection of 2,4,6‐trinitrophenol by Ground State Adduct Formation via Protonation of Quinoline Moiety of Non‐heme Ligands with Structural Evidence. ChemistrySelect 2020. [DOI: 10.1002/slct.202002244] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
15
|
Kumar D, Arora P, Singh H, Rajput JK. Polyhydroquinoline nanoaggregates: A dual fluorescent probe for detection of 2,4,6-trinitrophenol and chromium (VI). SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 230:118087. [PMID: 31986428 DOI: 10.1016/j.saa.2020.118087] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 01/07/2020] [Accepted: 01/20/2020] [Indexed: 06/10/2023]
Abstract
Fluorescent polyhydroquinoline (PHQ) derivative was fabricated utilizing one-pot engineered course. The PHQ derivative indicated aggregation induced emission enhancement (AIEE) with arrangement of nanoaggregates of size 11-13 nm in 95% watery DMF medium. The fluorescence emission of PHQ nanoaggregates was extinguished by including TNP and Cr (VI). They indicated prevalent fluorescence quenching towards both TNP and Cr (VI) over other meddling nitro-compounds and metal particles. In light of results got we presumed that both photo-induced fluorescence quenching of PHQ nanoaggregates by TNP, while Inner Filter Effect (IFE) was in charge of fluorescence quenching of PHQ nanoaggregates by Cr (VI). The PHQ nanoaggregates empowered identification of TNP and Cr (VI) down to 0.66 μM (TNP) and 0.28 μM (Cr (VI)). The use of PHQ nanoaggregates were reached out for location of TNP and Cr (VI) in genuine water tests.
Collapse
Affiliation(s)
- Deepak Kumar
- Department of Chemistry, Dr. B R Ambedkar National Institute of Technology, Jalandhar 144011, Punjab, India
| | - Priya Arora
- Department of Chemistry, Dr. B R Ambedkar National Institute of Technology, Jalandhar 144011, Punjab, India
| | | | - Jaspreet Kaur Rajput
- Department of Chemistry, Dr. B R Ambedkar National Institute of Technology, Jalandhar 144011, Punjab, India.
| |
Collapse
|
16
|
Parchegani F, Orojloo M, Zendehdel M, Amani S. Simultaneous measurement of hydrogen carbonate and acetate anions using biologically active receptor based on azo derivatives of naphthalene. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 229:117925. [PMID: 31846855 DOI: 10.1016/j.saa.2019.117925] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2019] [Revised: 12/01/2019] [Accepted: 12/06/2019] [Indexed: 06/10/2023]
Abstract
A novel receptor based on azo-derivatives of 1-naphthylamine (2-((E)-((4-chloro-3-(trifluoromethyl)phenyl)imino)methyl)-4-((E)-naphthalene-1-yldiazenyl)phenol(2) abbreviated CTNP was successfully designed and synthesized. Its sensing properties were studied deeply. Systematic studies of CTNP with HCO3- and AcO- anions in DMSO disclosed that there is hydrogen-bonding between CTNP and incoming anions. Significant changes in the visible region of the spectrum, as well as a drastic color change of CTNP from pale yellow to red, observed due to interaction as mentioned earlier. The stoichiometry of [CTNP: HCO3- or AcO-] complexes and association constants determined through Job's method and Benesi-Hildebrand (B-H) plot, respectively. Taking into account the analysis results, CTNP performs the selective recognition of sub-millimolar concentrations of HCO3- and AcO- efficiently. The antifungal activity of the receptor was tested against Aspergillus brasiliensis and Aspergillus niger. CTNP exhibited excellent antifungal activity against both strains. CTNP also represented antibacterial activity against Gram-positive bacteria: Staphylococcus epidermidis. It was cleared that designed receptor can be applied under physiological conditions for a long duration.
Collapse
Affiliation(s)
- Fatemeh Parchegani
- Chemistry Department, Faculty of Sciences, Arak University, Dr. Beheshti Ave., Arak 38156-88349, Iran
| | - Masoumeh Orojloo
- Chemistry Department, Faculty of Sciences, Arak University, Dr. Beheshti Ave., Arak 38156-88349, Iran
| | - Mojgan Zendehdel
- Chemistry Department, Faculty of Sciences, Arak University, Dr. Beheshti Ave., Arak 38156-88349, Iran
| | - Saeid Amani
- Chemistry Department, Faculty of Sciences, Arak University, Dr. Beheshti Ave., Arak 38156-88349, Iran.
| |
Collapse
|
17
|
Hou CY, Wang C, Xing YH, Bai FY. Fluorescence Detection of Metals and Nitro Aromatic Compounds Based on Tetrastyrene Derivatives. J Inorg Organomet Polym Mater 2019. [DOI: 10.1007/s10904-019-01283-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
18
|
Chen B, Chai S, Liu J, Liu C, Li Y, He J, Yu Z, Yang T, Feng C, Huang C. 2,4,6-Trinitrophenol detection by a new portable sensing gadget using carbon dots as a fluorescent probe. Anal Bioanal Chem 2019; 411:2291-2300. [DOI: 10.1007/s00216-019-01670-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 01/23/2019] [Accepted: 02/05/2019] [Indexed: 11/28/2022]
|
19
|
Ma Y, Zhao J, Liu J, Yang Y, Chu T. A binding model study on TNP fluorescent sensor 4,40-(9,9 dimethylfluorene-2,7-diyl)dibenzoic acid. J Photochem Photobiol A Chem 2018. [DOI: 10.1016/j.jphotochem.2018.08.047] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
20
|
Siddique AB, Pramanick AK, Chatterjee S, Ray M. Amorphous Carbon Dots and their Remarkable Ability to Detect 2,4,6-Trinitrophenol. Sci Rep 2018; 8:9770. [PMID: 29950660 PMCID: PMC6021439 DOI: 10.1038/s41598-018-28021-9] [Citation(s) in RCA: 101] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Accepted: 05/11/2018] [Indexed: 01/17/2023] Open
Abstract
Apparently mundane, amorphous nanostructures of carbon have optical properties which are as exotic as their crystalline counterparts. In this work we demonstrate a simple and inexpensive mechano-chemical method to prepare bulk quantities of self-passivated, amorphous carbon dots. Like the graphene quantum dots, the water soluble, amorphous carbon dots too, exhibit excitation-dependent photoluminescence with very high quantum yield (~40%). The origin and nature of luminescence in these high entropy nanostructures are well understood in terms of the abundant surface traps. The photoluminescence property of these carbon dots is exploited to detect trace amounts of the nitro-aromatic explosive - 2,4,6-trinitrophenol (TNP). The benign nanostructures can selectively detect TNP over a wide range of concentrations (0.5 to 200 µM) simply by visual inspection, with a detection limit of 0.2 µM, and consequently outperform nearly all reported TNP sensor materials.
Collapse
Affiliation(s)
- Abu Bakar Siddique
- Dr. M. N. Dastur School of Materials Science and Engineering, Indian Institute of Engineering Science and Technology, Shibpur, PO. Botanic Garden, Howrah, 711103, India
| | - Ashit Kumar Pramanick
- Materials Science Division, CSIR-National Metallurgical Laboratory, Jamshedpur, 831007, India
| | - Subrata Chatterjee
- Dr. M. N. Dastur School of Materials Science and Engineering, Indian Institute of Engineering Science and Technology, Shibpur, PO. Botanic Garden, Howrah, 711103, India
| | - Mallar Ray
- Dr. M. N. Dastur School of Materials Science and Engineering, Indian Institute of Engineering Science and Technology, Shibpur, PO. Botanic Garden, Howrah, 711103, India.
| |
Collapse
|
21
|
Karuk Elmas ŞN, Ozen F, Koran K, Gorgulu AO, Sadi G, Yilmaz I, Erdemir S. Selective and sensitive fluorescent and colorimetric chemosensor for detection of CO 32- anions in aqueous solution and living cells. Talanta 2018; 188:614-622. [PMID: 30029421 DOI: 10.1016/j.talanta.2018.06.036] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 06/08/2018] [Accepted: 06/10/2018] [Indexed: 12/22/2022]
Abstract
A new colorimetric and fluorescent chemosensor for visual determination of carbonate ions was developed by the microwave assisted solvent free synthesis of 7,8-dihydroxy-3-(4-methylphenyl) coumarin (DHMC). The structural characterization of DHMC was confirmed by microanalysis and spectroscopy methods (MALDI-TOF, FT-IR, 1H NMR, 13C NMR, and 2D HETCOR). The binding behaviors of DHMC were investigated towards various anions by UV-vis and fluorescence spectroscopy. DHMC showed a selective and sensitive fluorometric and colorimetric responses towards carbonate ion over other anions. The detection limit of CO32- was found to be 1.03 µM. Moreover, the fluorescence imaging in living cells suggests that DHMC has a great potential in the biological imaging application. It has been demonstrated that DHMC can be used as a rapid and reliable sensor for the determination of carbonate anion in a variety of practical applications.
Collapse
Affiliation(s)
- Şükriye Nihan Karuk Elmas
- Karamanoglu Mehmetbey University, Kamil Ozdag Faculty of Science, Department of Chemistry, Karaman 70100, Turkey
| | - Furkan Ozen
- Akdeniz University, Faculty of Education, Department of Mathematics and Science, Antalya, Turkey
| | - Kenan Koran
- Firat University, Faculty of Science, Department of Chemistry, Elazıg 23119, Turkey
| | - Ahmet Orhan Gorgulu
- Firat University, Faculty of Science, Department of Chemistry, Elazıg 23119, Turkey
| | - Gokhan Sadi
- Karamanoglu Mehmetbey University, Kamil Ozdag Faculty of Science, Department of Biology, Karaman 70100, Turkey
| | - Ibrahim Yilmaz
- Karamanoglu Mehmetbey University, Kamil Ozdag Faculty of Science, Department of Chemistry, Karaman 70100, Turkey.
| | - Serkan Erdemir
- Selcuk University, Faculty of Science, Department of Chemistry, Konya 42075, Turkey
| |
Collapse
|
22
|
Yang Q, Wang B, Sheng SN, Xian HS, Xie YB. A pillar-layered Cd(II) metal-organic framework for selective detection of organic explosives. J COORD CHEM 2017. [DOI: 10.1080/00958972.2017.1350656] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Qi Yang
- Department of Chemistry and Chemical Engineering, Beijing University of Technology, Beijing, PR China
| | - Bin Wang
- Department of Chemistry and Chemical Engineering, Beijing University of Technology, Beijing, PR China
| | - Shu-Nan Sheng
- Department of Chemistry and Chemical Engineering, Beijing University of Technology, Beijing, PR China
| | - Hong-Shi Xian
- Shanghai Institute of Space Power-Sources, Shanghai, PR China
| | - Ya-Bo Xie
- Department of Chemistry and Chemical Engineering, Beijing University of Technology, Beijing, PR China
| |
Collapse
|
23
|
Yan J, Ni JC, Zhao JX, Sun LX, Bai FY, Shi Z, Xing YH. The nitro aromatic compounds detection by triazole carboxylic acid and its complex with the fluorescent property. Tetrahedron 2017. [DOI: 10.1016/j.tet.2017.03.057] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
24
|
Li J, Wang N, Liu WT, Ding HL, An Y, Lü CW. A revisit to the Gattermann reaction: interesting synthesis of nitrogen heterocyclic aromatic halides and their fluorescence properties. NEW J CHEM 2017. [DOI: 10.1039/c7nj02672b] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The Gattermann reaction and an electrophilic substitution reaction, which were conducted in a one-pot reaction, are reported, and four aromatic dihalides of similar structure were obtained. 2-Chloro-5-(3-chloro-4-methoxy-phenyl)-1,3,4-thiadiazole was applied as a highly efficient fluorescence sensor for the detection of TNP.
Collapse
Affiliation(s)
- Juan Li
- College of Chemistry and Chemical Engineering
- Liaoning Normal University
- Dalian
- China
| | - Ning Wang
- College of Chemistry and Chemical Engineering
- Liaoning Normal University
- Dalian
- China
| | - Wen-Tao Liu
- College of Chemistry and Chemical Engineering
- Liaoning Normal University
- Dalian
- China
| | - Hong-Lin Ding
- College of Chemistry and Chemical Engineering
- Liaoning Normal University
- Dalian
- China
| | - Yue An
- College of Chemistry and Chemical Engineering
- Liaoning Normal University
- Dalian
- China
| | - Cheng-Wei Lü
- College of Chemistry and Chemical Engineering
- Liaoning Normal University
- Dalian
- China
| |
Collapse
|
25
|
Oliveri IP, Di Bella S. Lewis basicity of relevant monoanions in a non-protogenic organic solvent using a zinc(ii) Schiff-base complex as a reference Lewis acid. Dalton Trans 2017; 46:11608-11614. [PMID: 28825067 DOI: 10.1039/c7dt02821k] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
The Lewis basicity of relevant anions is reported for the first time and compared with that of neutral bases.
Collapse
Affiliation(s)
| | - Santo Di Bella
- Dipartimento di Scienze Chimiche
- Università di Catania
- I-95125 Catania
- Italy
| |
Collapse
|
26
|
Miyata O, Takeda N, Ueda M, Mori N, Miyoshi T, Shimoda M, Uno Y, Kitagawa H, Emoto N, Mukai T. Fluorescence Quenching Induced by Sequential Addition–Aromatization of A BODIPY-Containing Dienylimine with Thiols. HETEROCYCLES 2017. [DOI: 10.3987/com-16-13643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|