1
|
Ershova AI, Fedoseev SV, Blinov SA, Ievlev MY, Lipin KV, Ershov OV. Tunable full-color emission of stilbazoles containing a 2-halo-3,4-dicyanopyridine acceptor. Org Biomol Chem 2023; 21:7935-7943. [PMID: 37740323 DOI: 10.1039/d3ob01326j] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/24/2023]
Abstract
Synthesis of a series of novel push-pull stilbazole-based chromophores containing a strong 2-halocinchomeronic dinitrile acceptor is reported. The photophysical properties of the compounds are described. Strong positive solvatofluorochromism typical of intramolecular charge transfer (ICT) dyes is observed for the synthesized stilbazoles. Their tunable multicolor emission ranges from 442 nm to 710 nm and covers the whole visible spectrum.
Collapse
Affiliation(s)
- Anastasia I Ershova
- Chuvash State University named after I.N. Ulyanov, Moskovsky pr., 15, Cheboksary, Russia.
| | - Sergey V Fedoseev
- Chuvash State University named after I.N. Ulyanov, Moskovsky pr., 15, Cheboksary, Russia.
| | - Sergey A Blinov
- Chuvash State University named after I.N. Ulyanov, Moskovsky pr., 15, Cheboksary, Russia.
| | - Mikhail Yu Ievlev
- Chuvash State University named after I.N. Ulyanov, Moskovsky pr., 15, Cheboksary, Russia.
| | - Konstantin V Lipin
- Chuvash State University named after I.N. Ulyanov, Moskovsky pr., 15, Cheboksary, Russia.
| | - Oleg V Ershov
- Chuvash State University named after I.N. Ulyanov, Moskovsky pr., 15, Cheboksary, Russia.
| |
Collapse
|
2
|
Pont I, Galiana-Roselló C, Sabater-Arcis M, Bargiela A, Frías JC, Albelda MT, González-García J, García-España E. Development of potent tripodal G-quadruplex DNA binders and their efficient delivery to cancer cells by aptamer functionalised liposomes. Org Biomol Chem 2023; 21:1000-1007. [PMID: 36541358 DOI: 10.1039/d2ob01911f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Two new ligands (TPB3P and TPB3Py) showing a strong stabilisation effect and good selectivity for G4 over duplex DNAs have been synthesised. The ligands hold three analogous polyamine pendant arms (TPA3P and TPA3Py) but differ in the central aromatic core, which is a triphenylbenzene moiety instead of a triphenylamine moiety. Both TPB3P and TPB3Py exhibit high cytotoxicity in MCF-7, LN229 and HeLa cancer cells in contrast to TPA-based ligands, which exhibit no significant cytotoxicity. Moreover, the most potent G4 binders have been encapsulated in liposomes and AS1411 aptamer-targeted liposomes reaching nanomolar IC50 values for the most cytotoxic systems.
Collapse
Affiliation(s)
- Isabel Pont
- Instituto de Ciencia Molecular (ICMol), Departamento de Química Inorgánica, Universidad de Valencia, Catedrático José Beltrán 2, 46980, Paterna, Spain.
| | - Cristina Galiana-Roselló
- Instituto de Ciencia Molecular (ICMol), Departamento de Química Inorgánica, Universidad de Valencia, Catedrático José Beltrán 2, 46980, Paterna, Spain.
| | - Maria Sabater-Arcis
- Translational Genomics Group, Incliva Health Research Institute, Valencia, Spain.,Interdisciplinary Research Structure for Biotechnology and Biomedicine (ERI BIOTECMED), University of Valencia, Valencia, Spain.,CIPF-INCLIVA Joint Unit, Valencia, Spain
| | - Ariadna Bargiela
- Neuromuscular Research Unit, Neurology Department, Hospital La Fe, Instituto de Investigación Sanitaria La Fe (IISLAFE), Valencia, Spain
| | - Juan Carlos Frías
- Department of Biomedical Sciences, CEU Cardenal Herrera University, Ramón y Cajal s/n, 46115 Alfara del Patriarca, Spain
| | - M Teresa Albelda
- Instituto de Ciencia Molecular (ICMol), Departamento de Química Inorgánica, Universidad de Valencia, Catedrático José Beltrán 2, 46980, Paterna, Spain.
| | - Jorge González-García
- Instituto de Ciencia Molecular (ICMol), Departamento de Química Inorgánica, Universidad de Valencia, Catedrático José Beltrán 2, 46980, Paterna, Spain.
| | - Enrique García-España
- Instituto de Ciencia Molecular (ICMol), Departamento de Química Inorgánica, Universidad de Valencia, Catedrático José Beltrán 2, 46980, Paterna, Spain.
| |
Collapse
|
3
|
Pont I, Martínez-Camarena Á, Galiana-Roselló C, Tejero R, Albelda MT, González-García J, Vilar R, García-España E. Development of Polyamine-Substituted Triphenylamine Ligands with High Affinity and Selectivity for G-Quadruplex DNA. Chembiochem 2020; 21:1167-1177. [PMID: 31701633 DOI: 10.1002/cbic.201900678] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Indexed: 01/01/2023]
Abstract
Currently, significant efforts are devoted to designing small molecules able to bind selectively to guanine quadruplexes (G4s). These noncanonical DNA structures are implicated in various important biological processes and have been identified as potential targets for drug development. Previously, a series of triphenylamine (TPA)-based compounds, including macrocyclic polyamines, that displayed high affinity towards G4 DNA were reported. Following this initial work, herein a series of second-generation compounds, in which the central TPA has been functionalised with flexible and adaptive linear polyamines, are presented with the aim of maximising the selectivity towards G4 DNA. The acid-base properties of the new derivatives have been studied by means of potentiometric titrations, UV/Vis and fluorescence emission spectroscopy. The interaction with G4s and duplex DNA has been explored by using FRET melting assays, fluorescence spectroscopy and circular dichroism. Compared with previous TPA derivatives with macrocyclic substituents, the new ligands reported herein retain the G4 affinity, but display two orders of magnitude higher selectivity for G4 versus duplex DNA; this is most likely due to the ability of the linear substituents to embrace the G4 structure.
Collapse
Affiliation(s)
- Isabel Pont
- Department of Inorganic Chemistry, Institute of Molecular Science, University of Valencia, Catedrático José Beltrán 2, 46980, Paterna, Spain.,Department of Chemistry, Imperial College London, White City Campus, London, W12 OBZ, UK
| | - Álvaro Martínez-Camarena
- Department of Inorganic Chemistry, Institute of Molecular Science, University of Valencia, Catedrático José Beltrán 2, 46980, Paterna, Spain
| | - Cristina Galiana-Roselló
- Department of Inorganic Chemistry, Institute of Molecular Science, University of Valencia, Catedrático José Beltrán 2, 46980, Paterna, Spain
| | - Roberto Tejero
- Department of Physical Chemistry, University of Valencia, Dr. Moliner s/n, 46100, Burjassot, Spain
| | - M Teresa Albelda
- Department of Inorganic Chemistry, Institute of Molecular Science, University of Valencia, Catedrático José Beltrán 2, 46980, Paterna, Spain
| | - Jorge González-García
- Department of Inorganic Chemistry, Institute of Molecular Science, University of Valencia, Catedrático José Beltrán 2, 46980, Paterna, Spain.,Department of Chemistry, Imperial College London, White City Campus, London, W12 OBZ, UK
| | - Ramón Vilar
- Department of Chemistry, Imperial College London, White City Campus, London, W12 OBZ, UK
| | - Enrique García-España
- Department of Inorganic Chemistry, Institute of Molecular Science, University of Valencia, Catedrático José Beltrán 2, 46980, Paterna, Spain
| |
Collapse
|
4
|
Das AK, Ihmels H, Kölsch S. Diphenylaminostyryl-substituted quinolizinium derivatives as fluorescent light-up probes for duplex and quadruplex DNA. Photochem Photobiol Sci 2019; 18:1373-1381. [PMID: 30916703 DOI: 10.1039/c9pp00096h] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
(E)-2-[1'-((Diphenylamino)styryl)quinolizinium (3a) and 2,2'-{(phenylimino)-bis[(E)-1'',1'''-styryl]}-bis[quinolizinium] (3b) were synthesized, and their interactions with duplex DNA and quadruplex DNA were investigated with a particular focus on their ability to operate as DNA-sensitive fluorescent probes. Due to the significantly different size and steric demand of these quinolizinium derivatives they exhibit different binding modes. Thus, 3a intercalates into duplex DNA and binds through π stacking to quadruplex DNA, whereas 3b favours groove binding to both DNA forms. The emission intensity of these compounds is very low in aqueous solution, but it increases drastically upon association with duplex DNA by a factor of 11 (3a) and >100 (3b) and with quadruplex DNA by a factor of >100 (3a) and 10 (3b), with emission bands between 600 and 750 nm.
Collapse
Affiliation(s)
- Avijit Kumar Das
- Department of Chemistry and Biology, University of Siegen, Center of Micro- and Nanochemistry and Engineering, Adolf-Reichwein-Str. 2, 57068 Siegen, Germany.
| | | | | |
Collapse
|