1
|
Wloch M, Sun Z, Valzer E, Pouységu L, Quideau S. Total Synthesis of the Bacterial ortho-Quinol (+)-Strepantibin A through Iodyl-Type λ 5-Iodane-Promoted Asymmetric Hydroxylative Phenol Dearomatization. Org Lett 2024; 26:6086-6091. [PMID: 38990158 DOI: 10.1021/acs.orglett.4c01653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/12/2024]
Abstract
An enantioselective synthesis of the bacterial metabolite (+)-strepantibin A, a novel inhibitor of the hexokinase II (HK2) in cancer cells, is described. Its monomethylated resorcinolic para-terphenyl core was conveniently prepared through a Danheiser benzannulation. The elaboration of its ortho-quinolic chiral center was accomplished by relying on an iodyl-promoted regio- and enantioselective hydroxylative dearomatization. The olefinic side-chain of the resulting ortho-quinol was finally oxygenated under Wacker-type conditions to generate the propanone appendage of (+)-strepantibin A.
Collapse
Affiliation(s)
- Morgan Wloch
- Université de Bordeaux, ISM (CNRS-UMR 5255), 351 cours de la Libération, 33405 Talence Cedex, France
| | - Zhaozhao Sun
- Université de Bordeaux, ISM (CNRS-UMR 5255), 351 cours de la Libération, 33405 Talence Cedex, France
| | - Emmanuel Valzer
- Université de Bordeaux, ISM (CNRS-UMR 5255), 351 cours de la Libération, 33405 Talence Cedex, France
| | - Laurent Pouységu
- Université de Bordeaux, ISM (CNRS-UMR 5255), 351 cours de la Libération, 33405 Talence Cedex, France
| | - Stéphane Quideau
- Université de Bordeaux, ISM (CNRS-UMR 5255), 351 cours de la Libération, 33405 Talence Cedex, France
- Institut Universitaire de France, 1 rue Descartes, 75231 Paris Cedex 05, France
| |
Collapse
|
2
|
Zheng H, Cai L, Pan M, Uyanik M, Ishihara K, Xue XS. Catalyst-Substrate Helical Character Matching Determines the Enantioselectivity in the Ishihara-Type Iodoarenes Catalyzed Asymmetric Kita-Dearomative Spirolactonization. J Am Chem Soc 2023; 145:7301-7312. [PMID: 36940192 DOI: 10.1021/jacs.2c13295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2023]
Abstract
Catalyst design has traditionally focused on rigid structural elements to prevent conformational flexibility. Ishihara's elegant design of conformationally flexible C2-symmetric iodoarenes, a new class of privileged organocatalysts, for the catalytic asymmetric dearomatization (CADA) of naphthols is a notable exception. Despite the widespread use of the Ishihara catalysts for CADAs, the reaction mechanism remains the subject of debate, and the mode of asymmetric induction has not been well established. Here, we report an in-depth computational investigation of three possible mechanisms in the literature. Our results, however, reveal that this reaction is best rationalized by a fourth mechanism called "proton-transfer-coupled-dearomatization (PTCD)", which is predicted to be strongly favored over other competing pathways. The PTCD mechanism is consistent with a control experiment and further validated by applying it to rationalize the enantioselectivities. Oxidation of the flexible I(I) catalyst to catalytic active I(III) species induces a defined C2-symmetric helical chiral environment with a delicate balance between flexibility and rigidity. A match/mismatch effect between the active catalyst and the substrate's helical shape in the dearomatization transition states was observed. The helical shape match allows the active catalyst to adapt its conformation to maximize attractive noncovalent interactions, including I(III)···O halogen bond, N-H···O hydrogen bond, and π···π stacking, to stabilize the favored transition state. A stereochemical model capable of rationalizing the effect of catalyst structural variation on the enantioselectivities is developed. The present study enriches our understanding of how flexible catalysts achieve high stereoinduction and may serve as an inspiration for the future exploration of conformational flexibility for new catalyst designs.
Collapse
Affiliation(s)
- Hanliang Zheng
- Department of Chemistry, Zhejiang Normal University, 688 Yingbin Road, Jinhua 321004, China
| | - Liu Cai
- Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Ming Pan
- Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Muhammet Uyanik
- Graduate School of Engineering, Nagoya University Furocho, Chikusaku, Nagoya 464-8603, Japan
| | - Kazuaki Ishihara
- Graduate School of Engineering, Nagoya University Furocho, Chikusaku, Nagoya 464-8603, Japan
| | - Xiao-Song Xue
- Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China.,School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, 1 Sub-lane Xiangshan, Hangzhou 310024, P. R. China
| |
Collapse
|
3
|
El-Assaad TH, Zhu J, Sebastian A, McGrath DV, Neogi I, Parida KN. Dioxiranes: A Half-Century Journey. Org Chem Front 2022. [DOI: 10.1039/d2qo01005d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Dioxiranes are multi-tasking reagents inheriting mild and selective oxygen transfer attributes. These oxidants are accessed from the reaction of ketones with an oxidant and are employed stoichiometrically or catalytically (in...
Collapse
|
4
|
Kumar R, Singh FV, Takenaga N, Dohi T. Asymmetric Direct/Stepwise Dearomatization Reactions Involving Hypervalent Iodine Reagents. Chem Asian J 2021; 17:e202101115. [PMID: 34817125 DOI: 10.1002/asia.202101115] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 11/19/2021] [Indexed: 01/06/2023]
Abstract
A remarkable growth in hypervalent iodine-mediated oxidative transformations as stoichiometric reagents as well as catalysts has been well-documented due to their excellent properties, such as mildness, easy handling, high selectivity, environmentally friendly nature, and high stability. This review aims at highlighting the asymmetric oxidative dearomatization reactions involving hypervalent iodine compounds. The present article summarizes asymmetric intra- and intermolecular dearomatization reactions using chiral hypervalent iodine reagents/catalysts as well as hypervalent iodine-mediated dearomatization reactions followed by desymmetrization.
Collapse
Affiliation(s)
- Ravi Kumar
- Department of Chemistry, J. C. Bose University of Science & Technology, YMCA Faridabad, NH-2, Sector-6, Mathura Road, Faridabad, Haryana, 121006, India
| | - Fateh V Singh
- Chemistry Division, School of Advanced Sciences (SAS), Vellore Institute of Technology - Chennai, Chennai, 600127, Tamil Nadu, India
| | - Naoko Takenaga
- Faculty of Pharmacy, Meijo University, 150 Yagotoyama, Tempaku-ku, Nagoya, 468-8503, Japan
| | - Toshifumi Dohi
- College of Pharmaceutical Sciences, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu, Shiga, 525-0058, Japan
| |
Collapse
|
5
|
Shimazaki Y, Wata C, Hashimoto T, Maruoka K. Enantioselective Hydrative
para‐
Dearomatization of Sulfonanilides by an Indanol‐based Chiral Organoiodine Catalyst. ASIAN J ORG CHEM 2021. [DOI: 10.1002/ajoc.202100152] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Yuto Shimazaki
- Department of Chemistry Graduate School of Science Kyoto University 606-8502 Kyoto Sakyo Japan
| | - Chisato Wata
- Chiba Iodine Resource Innovation Center and Department of Chemistry, Graduate School of Science Chiba University 1–33, Yayoi, Inage 263-8522 Chiba Japan
| | - Takuya Hashimoto
- Chiba Iodine Resource Innovation Center and Department of Chemistry, Graduate School of Science Chiba University 1–33, Yayoi, Inage 263-8522 Chiba Japan
| | - Keiji Maruoka
- Department of Chemistry Graduate School of Science Kyoto University 606-8502 Kyoto Sakyo Japan
- School of Chemical Engineering and Light Industry Guangdong University of Technology 510006 Guangzhou Panyu District P. R. China
- Graduate School of Pharmaceutical Sciences Kyoto University 606-8501 Kyoto Sakyo Japan
| |
Collapse
|
6
|
Yoshida Y, Ishikawa S, Mino T, Sakamoto M. Bromonium salts: diaryl-λ3-bromanes as halogen-bonding organocatalysts. Chem Commun (Camb) 2021; 57:2519-2522. [DOI: 10.1039/d0cc07733j] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Bromonium salts have been typically but infrequently used as good leaving groups owing to their high nucleofugality. Herein, we report the synthesis of stable bromonium salts and their first catalytic application, with excellent product yield.
Collapse
Affiliation(s)
- Yasushi Yoshida
- Molecular Chirality Research Center
- Graduate School of Engineering
- Chiba University
- 1-33, Yayoi-cho, Inage-ku
- Chiba-Shi
| | - Seitaro Ishikawa
- Molecular Chirality Research Center
- Graduate School of Engineering
- Chiba University
- 1-33, Yayoi-cho, Inage-ku
- Chiba-Shi
| | - Takashi Mino
- Molecular Chirality Research Center
- Graduate School of Engineering
- Chiba University
- 1-33, Yayoi-cho, Inage-ku
- Chiba-Shi
| | - Masami Sakamoto
- Molecular Chirality Research Center
- Graduate School of Engineering
- Chiba University
- 1-33, Yayoi-cho, Inage-ku
- Chiba-Shi
| |
Collapse
|
7
|
Zheng H, Xue XS. Recent Computational Studies on Mechanisms of Hypervalent Iodine(III)-Promoted Dearomatization of Phenols. CURR ORG CHEM 2020. [DOI: 10.2174/1385272824999200620223218] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Hypervalent iodine-promoted dearomatization of phenols has received intense
attention. This mini-review summarizes recent computational mechanistic studies of phenolic
dearomatizations promoted by hypervalent iodine(III) reagents or catalysts. The first part
of this review describes mechanisms of racemic dearomatization of phenols, paying special
attention to the associative and dissociative pathways. The second part focuses on mechanisms
and selectivities of diastereo- or enantio-selective dearomatization of phenols.
Collapse
Affiliation(s)
- Hanliang Zheng
- College of Chemistry, Nankai University, Tianjin 300071, China
| | - Xiao-Song Xue
- College of Chemistry, Nankai University, Tianjin 300071, China
| |
Collapse
|
8
|
Abstract
Asymmetric organocatalytic oxidations have been witnessed to an impressive development in the last years thanks to the establishment of important chiral hypervalent iodines(III/V). Many different approaches involving both stoichiometric and catalytic versions have provided a fundamental advance in this area within asymmetric synthesis. The easily handing, nontoxic, mild, environmentally friendly (green oxidants), and high stability that are features of these reagents have been applied to many reactions and also have allowed exploring further unprecedented enantioselective transformations. The intention of the present review is thus to highlight as a whole the many approaches utilized up to date to prepare chiral iodines(III/V), as well as their reactivity in a comprehensive manner.
Collapse
Affiliation(s)
- Alejandro Parra
- Facultad de Ciencias, Departamento de Química Orgánica, Institute for Advance Research in Chemical Sciences (IAdChem) Universidad Autónoma de Madrid , 28049 Madrid , Spain
| |
Collapse
|
9
|
Asymmetric syntheses and applications of planar chiral hypervalent iodine(V) reagents with crown ether backbones. Tetrahedron 2019. [DOI: 10.1016/j.tet.2019.06.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
10
|
Yakura T, Fujiwara T, Yamada A, Nambu H. 2-Iodo- N-isopropyl-5-methoxybenzamide as a highly reactive and environmentally benign catalyst for alcohol oxidation. Beilstein J Org Chem 2018; 14:971-978. [PMID: 29977368 PMCID: PMC6009128 DOI: 10.3762/bjoc.14.82] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Accepted: 04/18/2018] [Indexed: 01/19/2023] Open
Abstract
Several N-isopropyliodobenzamides were evaluated as catalysts for the oxidation of benzhydrol to benzophenone in the presence of Oxone® (2KHSO5·KHSO4·K2SO4) as a co-oxidant at room temperature. A study on the substituent effect of the benzene ring of N-isopropyl-2-iodobenzamide on the oxidation revealed that its reactivity increased in the following order of substitution: 5-NO2 < 5-CO2Me, 3-OMe < 5-OAc < 5-Cl < H, 4-OMe < 5-Me < 5-OMe. The oxidation of various benzylic and aliphatic alcohols using a catalytic amount of the most reactive 5-methoxy derivative successfully resulted in moderate to excellent yields of the corresponding carbonyl compounds. The high reactivity of the 5-methoxy derivative at room temperature is a result of the rapid generation of the pentavalent species from the trivalent species during the reaction. 5-Methoxy-2-iodobenzamide would be an efficient and environmentally benign catalyst for the oxidation of alcohols, especially benzylic alcohols.
Collapse
Affiliation(s)
- Takayuki Yakura
- Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Sugitani, Toyama 930-0194, Japan
| | - Tomoya Fujiwara
- Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Sugitani, Toyama 930-0194, Japan
| | - Akihiro Yamada
- Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Sugitani, Toyama 930-0194, Japan
| | - Hisanori Nambu
- Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Sugitani, Toyama 930-0194, Japan
| |
Collapse
|
11
|
Fujita M, Miura K, Sugimura T. Enantioselective dioxytosylation of styrenes using lactate-based chiral hypervalent iodine(III). Beilstein J Org Chem 2018; 14:659-663. [PMID: 29623128 PMCID: PMC5870148 DOI: 10.3762/bjoc.14.53] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2017] [Accepted: 03/06/2018] [Indexed: 01/31/2023] Open
Abstract
A series of optically active hypervalent iodine(III) reagents prepared from the corresponding (R)-2-(2-iodophenoxy)propanoate derivative was employed for the asymmetric dioxytosylation of styrene and its derivatives. The electrophilic addition of the hypervalent iodine(III) compound toward styrene proceeded with high enantioface selectivity to give 1-aryl-1,2-di(tosyloxy)ethane with an enantiomeric excess of 70-96% of the (S)-isomer.
Collapse
Affiliation(s)
- Morifumi Fujita
- Graduate School of Material Science, University of Hyogo, Kohto, Kamigori, Hyogo 678-1297, Japan
| | - Koki Miura
- Graduate School of Material Science, University of Hyogo, Kohto, Kamigori, Hyogo 678-1297, Japan
| | - Takashi Sugimura
- Graduate School of Material Science, University of Hyogo, Kohto, Kamigori, Hyogo 678-1297, Japan
| |
Collapse
|
12
|
Fujita M. Mechanistic aspects of alkene oxidation using chiral hypervalent iodine reagents. Tetrahedron Lett 2017. [DOI: 10.1016/j.tetlet.2017.10.019] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|