1
|
Tian Y, Chen DP, Chai Y, Li M, Wang XC, Du Z, Wu X, Quan ZJ. Direct conversion of various phosphate sources to a versatile P-X reagent [TBA][PO 2X 2] via redox-neutral halogenation. Nat Commun 2025; 16:2004. [PMID: 40011449 DOI: 10.1038/s41467-025-57255-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 02/13/2025] [Indexed: 02/28/2025] Open
Abstract
Inorganic phosphates hold significant potential as ideal natural building blocks, forming a fundamental basis for organic and biochemical synthesis. However, their limited solubility, inherent chemical stability, and low reactivity pose substantial challenges to converting phosphates into organophosphates under mild conditions. This study introduces an efficient method for the direct conversion of phosphates into P(V)-X reagents, [TBA][PO2X2] (X = Cl, F), via a redox-neutral halogenation process. This method utilizes cyanuric chloride (or cyanuric fluoride) as the halogenation reagent, in combination with 1-formylpyrrolidine and tetrabutylammonium chloride (TBAC), under ambient conditions. The approach enables effective halogenation conversion for various P(V) sources, including orthophosphates, pyrophosphoric acid, Na3P3O9 and P2O5. Furthermore, we demonstrate the synthetic utility of the P(V)-Cl reagent in the phosphorylation of diverse O-, S-, N- and C-nucleophiles. Key advantages of this conversion process include the use of inexpensive and readily available chemicals, the avoidance of high-energy redox reactions, and the generation of a reactive yet stable P(V)-X reagent.
Collapse
Affiliation(s)
- Yaling Tian
- Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu, PR China
| | - Dong-Ping Chen
- Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu, PR China
| | - Yao Chai
- Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu, PR China
| | - Ming Li
- Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu, PR China
| | - Xi-Cun Wang
- Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu, PR China
| | - Zhengyin Du
- Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu, PR China
| | - Xiaofeng Wu
- Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu, PR China
- Materials Innovation Factory, and Department of Chemistry, University of Liverpool, Liverpool, L69 7ZD, UK
| | - Zheng-Jun Quan
- Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu, PR China.
| |
Collapse
|
2
|
Geeson M, Cummins CC. Let's Make White Phosphorus Obsolete. ACS CENTRAL SCIENCE 2020; 6:848-860. [PMID: 32607432 PMCID: PMC7318074 DOI: 10.1021/acscentsci.0c00332] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Indexed: 05/20/2023]
Abstract
Industrial and laboratory methods for incorporating phosphorus atoms into molecules within the framework of Green Chemistry are in their infancy. Current practice requires large inputs of energy, involves toxic intermediates, and generates substantial waste. Furthermore, a negligible fraction of phosphorus-containing waste is recycled which in turn contributes to negative environmental impacts, such as eutrophication. Methods that begin to address some of these drawbacks are reviewed, and some key opportunities to be realized by pursuing organophosphorus chemistry under the principles of Green Chemistry are highlighted. Methods used by nature, or in the chemistry of other elements such as silicon, are discussed as model processes for the future of phosphorus in chemical synthesis.
Collapse
|
3
|
Wang D, Qi J, Han W, Gao JM, Horsman GP. Kanamycin-induced production of 2',3'-cyclic AMP in Escherichia coli. Biochem Biophys Res Commun 2020; 527:854-860. [PMID: 32430174 DOI: 10.1016/j.bbrc.2020.04.144] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 04/29/2020] [Indexed: 10/24/2022]
Abstract
In contrast to the well-characterized second messenger adenosine 3',5'-cyclic monophosphate (3',5'-cAMP), the biological roles of its isomer 2',3'-cAMP remain largely unknown, especially in bacteria. Recent work reported that RNase I-dependent elevation of 2',3'-cNMP levels in Escherichia coli correlated with reduced biofilm production, and separate studies demonstrated E. coli ribonuclease activation in response to aminoglycoside antibiotics. Here we report that E. coli produced 2',3'-cAMP in response to kanamycin at sub-inhibitory levels. Surprisingly, other aminoglycosides like streptomycin or gentamicin did not generate levels of 2',3'-cAMP detectable by 31P NMR. Interestingly, because 2',3'-cAMP is also produced in E. coli strains expressing a plasmid-encoded kanamycin resistance gene but not by other ribosome-targeting antibiotics, this kanamycin-specific production may not reflect disrupted protein synthesis. Overall, this finding provides a link between aminoglycoside-induced ribonuclease activity and 2',3'-cAMP production in E. coli.
Collapse
Affiliation(s)
- Dacheng Wang
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry and Pharmacy, Northwest A&F University, Yangling, 712100, China; Department of Chemistry & Biochemistry, Wilfrid Laurier University, Waterloo, ON, N2L 3C5, Canada
| | - Jianzhao Qi
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry and Pharmacy, Northwest A&F University, Yangling, 712100, China
| | - Wenbo Han
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry and Pharmacy, Northwest A&F University, Yangling, 712100, China
| | - Jin-Ming Gao
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry and Pharmacy, Northwest A&F University, Yangling, 712100, China.
| | - Geoff P Horsman
- Department of Chemistry & Biochemistry, Wilfrid Laurier University, Waterloo, ON, N2L 3C5, Canada.
| |
Collapse
|
4
|
Yadav M, Krishnamurthy R. Bis(dimethylamino)phosphorodiamidate: A Reagent for the Regioselective Cyclophosphorylation of cis-Diols Enabling One-Step Access to High-Value Target Cyclophosphates. Org Lett 2019; 21:7400-7404. [PMID: 31469285 DOI: 10.1021/acs.orglett.9b02694] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Bis(dimethylamino)phosphorodiamidate (BDMDAP) enables an efficient and one-pot cyclophosphorylation of vicinal cis-diol moiety of polyol-organics of biological importance without the need for protecting group chemistry and is amenable to large-scale reactions. The utility of this reagent is demonstrated through the synthesis of high-value targets such as cyclic phosphates of myo-inositol, nucleosides, metabolites, and drug molecules.
Collapse
Affiliation(s)
- Mahipal Yadav
- Department of Chemistry , The Scripps Research Institute , 10550 North Torrey Pines Road , La Jolla , California 92037 , United States.,NSF-NASA Center for Chemical Evolution , Atlanta , Georgia 30332 , United States
| | - Ramanarayanan Krishnamurthy
- Department of Chemistry , The Scripps Research Institute , 10550 North Torrey Pines Road , La Jolla , California 92037 , United States.,NSF-NASA Center for Chemical Evolution , Atlanta , Georgia 30332 , United States
| |
Collapse
|
5
|
Hodgson DR. Physicochemical Aspects of Aqueous and Nonaqueous Approaches to the Preparation of Nucleosides, Nucleotides and Phosphate Ester Mimics. ADVANCES IN PHYSICAL ORGANIC CHEMISTRY 2017. [DOI: 10.1016/bs.apoc.2017.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|