1
|
Huang W, Laughlin ST. Cell-selective bioorthogonal labeling. Cell Chem Biol 2024; 31:409-427. [PMID: 37837964 DOI: 10.1016/j.chembiol.2023.09.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/25/2023] [Accepted: 09/19/2023] [Indexed: 10/16/2023]
Abstract
In classic bioorthogonal labeling experiments, the cell's biosynthetic machinery incorporates bioorthogonal tags, creating tagged biomolecules that are subsequently reacted with a corresponding bioorthogonal partner. This two-step approach labels biomolecules throughout the organism indiscriminate of cell type, which can produce background in applications focused on specific cell populations. In this review, we cover advances in bioorthogonal chemistry that enable targeting of bioorthogonal labeling to a desired cell type. Such cell-selective bioorthogonal labeling is achieved in one of three ways. The first approach restricts labeling to specific cells by cell-selective expression of engineered enzymes that enable the bioorthogonal tag's incorporation. The second approach preferentially localizes the bioorthogonal reagents to the desired cell types to restrict their uptake to the desired cells. Finally, the third approach cages the reactivity of the bioorthogonal reagents, allowing activation of the reaction in specific cells by uncaging the reagents selectively in those cell populations.
Collapse
Affiliation(s)
- Wei Huang
- Department of Chemistry and Institute for Chemical Biology and Drug Discovery, Stony Brook University, Stony Brook, NY 11794, USA
| | - Scott T Laughlin
- Department of Chemistry and Institute for Chemical Biology and Drug Discovery, Stony Brook University, Stony Brook, NY 11794, USA.
| |
Collapse
|
2
|
Huang W, Gunawardhana N, Zhang Y, Escorihuela J, Laughlin ST. Pyranthiones/Pyrones: "Click and Release" Donors for Subcellular Hydrogen Sulfide Delivery and Labeling. Chemistry 2024; 30:e202303465. [PMID: 37985373 DOI: 10.1002/chem.202303465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 11/15/2023] [Accepted: 11/17/2023] [Indexed: 11/22/2023]
Abstract
Hydrogen sulfide (H2 S), one of the most important gasotransmitters, plays a critical role in endogenous signaling pathways of many diseases. However, developing H2 S donors with both tunable release kinetics and high release efficiency for subcellular delivery has been challenging. Here, we describe a click and release reaction between pyrone/pyranthiones and bicyclononyne (BCN). This reaction features a release of CO2 /COS with second-order rate constants comparable to Strain-Promoted Azide-Alkyne Cycloaddition reactions (SPAACs). Interestingly, pyranthiones showed enhanced reaction rates compared to their pyrone counterparts. We investigated pyrone biorthogonality and demonstrated their utility in protein labeling applications. Moreover, we synthesized substituted pyranthiones with H2 S release kinetics that can address the range of physiologically relevant H2 S dynamics in cells and achieved quantitative H2 S release efficiency in vitro. Finally, we explored the potential of pyranthiones as H2 S/COS donors for mitochondrial-targeted H2 S delivery in living cells.
Collapse
Affiliation(s)
- Wei Huang
- Department of Chemistry, Stony Brook University, 100 Nicolls Road, Stony Brook, NY 11790, United States
| | - Nipuni Gunawardhana
- Department of Chemistry, Stony Brook University, 100 Nicolls Road, Stony Brook, NY 11790, United States
| | - Yunlei Zhang
- Department of Chemistry, Stony Brook University, 100 Nicolls Road, Stony Brook, NY 11790, United States
| | - Jorge Escorihuela
- Departamento de Química Orgánica, Universitat de València, Avda. Vicente Andrés Estellés s/n, Burjassot, 46100, Valencia, Spain
| | - Scott T Laughlin
- Department of Chemistry, Stony Brook University, 100 Nicolls Road, Stony Brook, NY 11790, United States
| |
Collapse
|
3
|
Precise spatiotemporal control of voltage-gated sodium channels by photocaged saxitoxin. Nat Commun 2021; 12:4171. [PMID: 34234116 PMCID: PMC8263607 DOI: 10.1038/s41467-021-24392-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 06/09/2021] [Indexed: 02/06/2023] Open
Abstract
Here we report the pharmacologic blockade of voltage-gated sodium ion channels (NaVs) by a synthetic saxitoxin derivative affixed to a photocleavable protecting group. We demonstrate that a functionalized saxitoxin (STX-eac) enables exquisite spatiotemporal control of NaVs to interrupt action potentials in dissociated neurons and nerve fiber bundles. The photo-uncaged inhibitor (STX-ea) is a nanomolar potent, reversible binder of NaVs. We use STX-eac to reveal differential susceptibility of myelinated and unmyelinated axons in the corpus callosum to NaV-dependent alterations in action potential propagation, with unmyelinated axons preferentially showing reduced action potential fidelity under conditions of partial NaV block. These results validate STX-eac as a high precision tool for robust photocontrol of neuronal excitability and action potential generation.
Collapse
|
4
|
Shchelik IS, Tomio A, Gademann K. Design, Synthesis, and Biological Evaluation of Light-Activated Antibiotics. ACS Infect Dis 2021; 7:681-692. [PMID: 33656844 DOI: 10.1021/acsinfecdis.1c00015] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The spatial and temporal control of bioactivity of small molecules by light (photopharmacology) constitutes a promising approach for study of biological processes and ultimately for the treatment of diseases. In this study, we investigated two different "caged" antibiotic classes that can undergo remote activation with UV-light at λ = 365 nm, via the conjugation of deactivating and photocleavable units through a short synthetic sequence. The two widely used antibiotics vancomycin and cephalosporin were thus enhanced in their performance by rendering them photoresponsive and thereby suppressing undesired off-site activity. The antimicrobial activity against Bacillus subtilis ATCC 6633, Staphylococcus aureus ATCC 29213, S. aureus ATCC 43300 (MRSA), Escherichia coli ATCC 25922, and Pseudomonas aeruginosa ATCC 27853 could be spatiotemporally controlled with light. Both molecular series displayed a good activity window. The vancomycin derivative displayed excellent values against Gram-positive strains after uncaging, and the next-generation caged cephalosporin derivative achieved good and broad activity against both Gram-positive and Gram-negative strains after photorelease.
Collapse
Affiliation(s)
- Inga S. Shchelik
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Andrea Tomio
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Karl Gademann
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| |
Collapse
|
5
|
Jiang T, Kumar P, Huang W, Kao W, Thompson AO, Camarda FM, Laughlin ST. Modular Enzyme‐ and Light‐Based Activation of Cyclopropene–Tetrazine Ligation. Chembiochem 2019; 20:2222-2226. [DOI: 10.1002/cbic.201900137] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 04/15/2019] [Indexed: 12/30/2022]
Affiliation(s)
- Ting Jiang
- Department of ChemistryStony Brook University 100 Nicolls Road Stony Brook NY 11794 USA
| | - Pratik Kumar
- Department of ChemistryStony Brook University 100 Nicolls Road Stony Brook NY 11794 USA
| | - Wei Huang
- Department of ChemistryStony Brook University 100 Nicolls Road Stony Brook NY 11794 USA
| | - Wei‐Siang Kao
- Department of ChemistryStony Brook University 100 Nicolls Road Stony Brook NY 11794 USA
| | - Adrian O. Thompson
- Department of ChemistryStony Brook University 100 Nicolls Road Stony Brook NY 11794 USA
| | - Frank M. Camarda
- Department of ChemistryStony Brook University 100 Nicolls Road Stony Brook NY 11794 USA
| | - Scott T. Laughlin
- Department of ChemistryStony Brook University 100 Nicolls Road Stony Brook NY 11794 USA
| |
Collapse
|
6
|
Kumar P, Huang W, Shukhman D, Camarda FM, Laughlin ST. Stable cyclopropene-containing analogs of the amino acid neurotransmitter glutamate. Tetrahedron Lett 2019. [DOI: 10.1016/j.tetlet.2019.04.046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
7
|
Kumar P, Zainul O, Camarda FM, Jiang T, Mannone JA, Huang W, Laughlin ST. Caged Cyclopropenes with Improved Tetrazine Ligation Kinetics. Org Lett 2019; 21:3721-3725. [DOI: 10.1021/acs.orglett.9b01177] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Pratik Kumar
- Department of Chemistry, Stony Brook University, Stony Brook, New York 11790, United States
| | - Omar Zainul
- Department of Chemistry, Stony Brook University, Stony Brook, New York 11790, United States
| | - Frank M. Camarda
- Department of Chemistry, Stony Brook University, Stony Brook, New York 11790, United States
| | - Ting Jiang
- Department of Chemistry, Stony Brook University, Stony Brook, New York 11790, United States
| | - John A. Mannone
- Department of Chemistry, Stony Brook University, Stony Brook, New York 11790, United States
| | - Wei Huang
- Department of Chemistry, Stony Brook University, Stony Brook, New York 11790, United States
| | - Scott T. Laughlin
- Department of Chemistry, Stony Brook University, Stony Brook, New York 11790, United States
| |
Collapse
|
8
|
Abstract
The bioorthogonal reaction toolbox contains approximately two-dozen unique chemistries that permit selective tagging and probing of biomolecules. Over the past two decades, significant effort has been devoted to optimizing and discovering bioorthogonal reagents that are faster, fluorogenic, and orthogonal to the already existing bioorthogonal repertoire. Conversely, efforts to explore bioorthogonal reagents whose reactivity can be controlled in space and/or time are limited. The "activatable" bioorthogonal reagents that do exist are often unimodal, meaning that their reagent's activation method cannot be easily modified to enable activation with red-shifted wavelengths, enzymes, or metabolic-byproducts and ions like H2O2 or Fe3+. Here, we summarize the available activatable bioorthogonal reagents with a focus on our recent addition: modular caged cyclopropenes. We designed caged cyclopropenes to be unreactive to their bioorthogonal partner until they are activated through the removal of the cage by light, an enzyme, or another reaction partner. To accomplish this, their structure includes a nitrogen atom at the cyclopropene C3 position that is decorated with the desired caging group through a carbamate linkage. This 3-N cyclopropene system can allow control of cyclopropene reactivity using a multitude of already available photo- and enzyme-caging groups. Additionally, this cyclopropene scaffold can enable metabolic-byproduct or ion activation of bioorthogonal reactions.
Collapse
Affiliation(s)
- Pratik Kumar
- Department of Chemistry, Stony Brook University, Stony Brook, NY, United States
| | - Scott T Laughlin
- Department of Chemistry, Stony Brook University, Stony Brook, NY, United States; Institute of Chemical Biology and Drug Discovery, Stony Brook University, Stony Brook, NY, United States.
| |
Collapse
|
9
|
Marcantoni E, Palmieri A, Petrini M. Recent synthetic applications of α-amido sulfones as precursors of N-acylimino derivatives. Org Chem Front 2019. [DOI: 10.1039/c9qo00196d] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
α-Amido sulfones can be directly used as N-acylimine or N-acyliminium ion precursors in several synthetic processes aimed at the preparation of nitrogen containing compounds. This review collects the most relevant and practical utilizations of α-amido sulfones appeared in the literature after 2005.
Collapse
Affiliation(s)
- Enrico Marcantoni
- School of Science and Technology
- Chemistry Division
- University of Camerino
- 1 I-62032 Camerino
- Italy
| | - Alessandro Palmieri
- School of Science and Technology
- Chemistry Division
- University of Camerino
- 1 I-62032 Camerino
- Italy
| | - Marino Petrini
- School of Science and Technology
- Chemistry Division
- University of Camerino
- 1 I-62032 Camerino
- Italy
| |
Collapse
|
10
|
Benfodda Z, Benimélis D, Reginato G, Meffre P. Ethynylglycine synthon, a useful precursor for the synthesis of biologically active compounds: an update. Part II: synthetic uses of ethynylglycine synthon. Amino Acids 2018; 50:1307-1328. [DOI: 10.1007/s00726-018-2628-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Accepted: 07/20/2018] [Indexed: 11/28/2022]
|
11
|
Kumar P, Jiang T, Zainul O, Preston AN, Li S, Farr JD, Suri P, Laughlin ST. Lipidated cyclopropenes via a stable 3- N spirocyclopropene scaffold. Tetrahedron Lett 2018; 59:3435-3438. [PMID: 30344353 PMCID: PMC6190722 DOI: 10.1016/j.tetlet.2018.08.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Lipidated cyclopropenes serve as useful bioorthogonal reagents for imaging cell membranes due to the cyclopropene's small size and ability to ligate with pro-fluorescent tetrazines. Previously, the lipidation of cyclopropenes required modification at the C3 position because methods to append lipids at C1/C2 were not available. Herein, we describe C1/C2 lipidation with the biologically active lipid ceramide and a common phospholipid using a cyclopropene scaffold whose reactivity with 1,2,4,5-tetrazines has been caged.
Collapse
Affiliation(s)
- Pratik Kumar
- Department of Chemistry, Stony Brook University, Stony Brook, NY, 11790, United States
| | - Ting Jiang
- Department of Chemistry, Stony Brook University, Stony Brook, NY, 11790, United States
| | - Omar Zainul
- Department of Chemistry, Stony Brook University, Stony Brook, NY, 11790, United States
| | - Alyssa N. Preston
- Department of Chemistry, Stony Brook University, Stony Brook, NY, 11790, United States
| | - Sining Li
- Department of Chemistry, Stony Brook University, Stony Brook, NY, 11790, United States
| | - Joshua D. Farr
- Department of Chemistry, Stony Brook University, Stony Brook, NY, 11790, United States
| | - Pavit Suri
- Department of Chemistry, Stony Brook University, Stony Brook, NY, 11790, United States
| | - Scott T. Laughlin
- Department of Chemistry, Stony Brook University, Stony Brook, NY, 11790, United States
| |
Collapse
|
12
|
The chemistry of the carbon-transition metal double and triple bond: Annual survey covering the year 2016. Coord Chem Rev 2018. [DOI: 10.1016/j.ccr.2017.09.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|