1
|
Preparation of Synthetic and Natural Derivatives of Flavonoids Using Suzuki-Miyaura Cross-Coupling Reaction. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27030967. [PMID: 35164232 PMCID: PMC8840526 DOI: 10.3390/molecules27030967] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 01/27/2022] [Accepted: 01/28/2022] [Indexed: 11/16/2022]
Abstract
Herein, we report the use of the Suzuki–Miyaura cross-coupling reaction for the preparation of a library of synthetic derivatives of flavonoids for biological activity assays. We have investigated the reactivity of halogenated flavonoids with aryl boronates and with boronyl flavonoids. This reaction was used to prepare new synthetic derivatives of flavonoids substituted at C-8 with aryl, heteroaryl, alkyl, and boronate substituents. The formation of flavonoid boronate enabled a cross-coupling reaction with halogenated flavones yielding biflavonoids connected at C-8. This method was used for the preparation of natural compounds including C-8 prenylated compounds, such as sinoflavonoid NB. Flavonoid boronates were used for the preparation of rare C-8 hydroxyflavonoids (natural flavonoids gossypetin and hypolaetin). A series of previously unknown derivatives of quercetin and luteolin were prepared and fully characterized.
Collapse
|
2
|
Yajun M, Xiangmin S, Yangjie L, Ruimei C, Yali F, Guangyu Z. Research Progress on the Synthesis of Quercetin Derivatives. CHINESE J ORG CHEM 2022. [DOI: 10.6023/cjoc202203016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
3
|
Cruz L, Basílio N, Mateus N, de Freitas V, Pina F. Natural and Synthetic Flavylium-Based Dyes: The Chemistry Behind the Color. Chem Rev 2021; 122:1416-1481. [PMID: 34843220 DOI: 10.1021/acs.chemrev.1c00399] [Citation(s) in RCA: 98] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Flavylium compounds are a well-known family of pigments because they are prevalent in the plant kingdom, contributing to colors over a wide range from shades of yellow-red to blue in fruits, flowers, leaves, and other plant parts. Flavylium compounds include a large variety of natural compound classes, namely, anthocyanins, 3-deoxyanthocyanidins, auronidins, and their respective aglycones as well as anthocyanin-derived pigments (e.g., pyranoanthocyanins, anthocyanin-flavan-3-ol dimers). During the past few decades, there has been increasing interest among chemists in synthesizing different flavylium compounds that mimic natural structures but with different substitution patterns that present a variety of spectroscopic characteristics in view of their applications in different industrial fields. This Review provides an overview of the chemistry of flavylium-based compounds, in particular, the synthetic and enzymatic approaches and mechanisms reported in the literature for obtaining different classes of pigments, their physical-chemical properties in relation to their pH-dependent equilibria network, and their chemical and enzymatic degradation. The development of flavylium-based systems is also described throughout this Review for emergent applications to explore some of the physical-chemical properties of the multistate of species generated by these compounds.
Collapse
Affiliation(s)
- Luis Cruz
- LAQV-REQUIMTE, Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Rua do Campo Alegre, s/n, 4169-007 Porto, Portugal
| | - Nuno Basílio
- LAQV-REQUIMTE, Department of Chemistry, Faculty of Sciences and Technology, New University of Lisbon, 2829-516 Caparica, Portugal
| | - Nuno Mateus
- LAQV-REQUIMTE, Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Rua do Campo Alegre, s/n, 4169-007 Porto, Portugal
| | - Victor de Freitas
- LAQV-REQUIMTE, Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Rua do Campo Alegre, s/n, 4169-007 Porto, Portugal
| | - Fernando Pina
- LAQV-REQUIMTE, Department of Chemistry, Faculty of Sciences and Technology, New University of Lisbon, 2829-516 Caparica, Portugal
| |
Collapse
|
4
|
Ramos ITL, Silva RJM, Silva TMS, Camara CA. Palladium-catalyzed coupling reactions in flavonoids: A retrospective of recent synthetic approaches. SYNTHETIC COMMUN 2021. [DOI: 10.1080/00397911.2021.1988643] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Ingrid T. L. Ramos
- Chemistry Department, Universidade Federal Rural de Pernambuco, Recife, Brazil
| | - Rerison J. M. Silva
- Chemistry Department, Universidade Federal Rural de Pernambuco, Recife, Brazil
| | - Tania M. S. Silva
- Chemistry Department, Universidade Federal Rural de Pernambuco, Recife, Brazil
| | - Celso A. Camara
- Chemistry Department, Universidade Federal Rural de Pernambuco, Recife, Brazil
| |
Collapse
|
5
|
Li J, Tan G, Cai Y, Liu R, Xiong X, Gu B, He W, Liu B, Ren Q, Wu J, Chi B, Zhang H, Zhao Y, Xu Y, Zou Z, Kang F, Xu K. A novel Apigenin derivative suppresses renal cell carcinoma via directly inhibiting wild-type and mutant MET. Biochem Pharmacol 2021; 190:114620. [PMID: 34043966 DOI: 10.1016/j.bcp.2021.114620] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 05/20/2021] [Accepted: 05/20/2021] [Indexed: 11/25/2022]
Abstract
MET, the receptor of hepatocyte growth factor (HGF), is a driving factor in renal cell carcinoma (RCC) and also a proven drug target for cancer treatment. To improve the activity and to investigate the mechanisms of action of Apigenin (APG), novel derivatives of APG with improved properties were synthesized and their activities against Caki-1 human renal cancer cell line were evaluated. It was found that compound 15e exhibited excellent potency against the growth of multiple RCC cell lines including Caki-1, Caki-2 and ACHN and is superior to APG and Crizotinib. Subsequent investigations demonstrated that compound 15e can inhibit Caki-1 cell proliferation, migration and invasion. Mechanistically, 15e directly targeted the MET kinase domain, decreased its auto-phosphorylation at Y1234/Y1235 and inhibited its kinase activity and downstream signaling. Importantly, 15e had inhibitory activity against mutant MET V1238I and Y1248H which were resistant to approved MET inhibitors Cabozantinib, Crizotinib or Capmatinib. In vivo tumor graft study confirmed that 15e repressed RCC growth through inhibition of MET activation. These results indicate that compound 15e has the potential to be developed as a treatment for RCC, and especially against drug-resistant MET mutations.
Collapse
Affiliation(s)
- Jing Li
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, China
| | - Guishan Tan
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, China; Xiangya Hospital of Central South University, Changsha 410008, China
| | - Yabo Cai
- State Key Laboratory of Anti-Infective Drug Development, Sunshine Lake Pharma Co. Ltd, Dongguan 523871, China
| | - Ruihuan Liu
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, China; Zhuzhou Qianjin Pharmaceutical Co. Ltd, Zhuzhou, 412007, China
| | - Xiaolin Xiong
- State Key Laboratory of Anti-Infective Drug Development, Sunshine Lake Pharma Co. Ltd, Dongguan 523871, China
| | - Baohua Gu
- State Key Laboratory of Anti-Infective Drug Development, Sunshine Lake Pharma Co. Ltd, Dongguan 523871, China
| | - Wei He
- State Key Laboratory of Anti-Infective Drug Development, Sunshine Lake Pharma Co. Ltd, Dongguan 523871, China
| | - Bing Liu
- State Key Laboratory of Anti-Infective Drug Development, Sunshine Lake Pharma Co. Ltd, Dongguan 523871, China
| | - Qingyun Ren
- State Key Laboratory of Anti-Infective Drug Development, Sunshine Lake Pharma Co. Ltd, Dongguan 523871, China
| | - Jianping Wu
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, China
| | - Bo Chi
- State Key Laboratory of Anti-Infective Drug Development, Sunshine Lake Pharma Co. Ltd, Dongguan 523871, China
| | - Hang Zhang
- State Key Laboratory of Anti-Infective Drug Development, Sunshine Lake Pharma Co. Ltd, Dongguan 523871, China
| | - Yanzhong Zhao
- The Third Xiangya Hospital, Central South University, Changsha 410013, China
| | - Yangrui Xu
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, China
| | - Zhenxing Zou
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, China
| | - Fenghua Kang
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, China
| | - Kangping Xu
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, China.
| |
Collapse
|
6
|
Nie JP, Qu ZN, Chen Y, Chen JH, Jiang Y, Jin MN, Yu Y, Niu WY, Duan HQ, Qin N. Discovery and anti-diabetic effects of novel isoxazole based flavonoid derivatives. Fitoterapia 2020; 142:104499. [DOI: 10.1016/j.fitote.2020.104499] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 02/06/2020] [Accepted: 02/07/2020] [Indexed: 01/03/2023]
|
7
|
Transition metal-catalyzed cross-coupling methodologies for the engineering of small molecules with applications in organic electronics and photovoltaics. Coord Chem Rev 2019. [DOI: 10.1016/j.ccr.2019.04.007] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
8
|
Ramos ITL, Silva TMS, Camara CA. Synthesis of new 6- and 8-Alkenyl-3,7,3’,4’-Tetramethoxyquercetin derivatives by microwave-assisted Heck coupling. SYNTHETIC COMMUN 2019. [DOI: 10.1080/00397911.2019.1636398] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Ingrid T. L. Ramos
- Departamento de Química, Universidade Federal Rural de Pernambuco, Recife, PE, Brazil
| | - Tania M. S. Silva
- Departamento de Química, Universidade Federal Rural de Pernambuco, Recife, PE, Brazil
| | - Celso A. Camara
- Departamento de Química, Universidade Federal Rural de Pernambuco, Recife, PE, Brazil
| |
Collapse
|
9
|
Formation of Nudicaulins In Vivo and In Vitro and the Biomimetic Synthesis and Bioactivity of O-Methylated Nudicaulin Derivatives. Molecules 2018; 23:molecules23123357. [PMID: 30567384 PMCID: PMC6320756 DOI: 10.3390/molecules23123357] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 12/03/2018] [Accepted: 12/15/2018] [Indexed: 12/19/2022] Open
Abstract
Nudicaulins are yellow flower pigments accounting for the color of the petals of Papaver nudicaule (Papaveraceae). These glucosidic compounds belong to the small group of indole/flavonoid hybrid alkaloids. Here we describe in vivo and in vitro experiments which substantiate the strongly pH-dependent conversion of pelargonidin glucosides to nudicaulins as the final biosynthetic step of these alkaloids. Furthermore, we report the first synthesis of nudicaulin aglycon derivatives, starting with quercetin and ending up at the biomimetic fusion of a permethylated anthocyanidin with indole. A small library of nudicaulin derivatives with differently substituted indole units was prepared, and the antimicrobial, antiproliferative and cell toxicity data of the new compounds were determined. The synthetic procedure is considered suitable for preparing nudicaulin derivatives which are structurally modified in the indole and/or the polyphenolic part of the molecule and may have optimized pharmacological activities.
Collapse
|
10
|
Basílio N, Lima JC, Cruz L, de Freitas V, Pina F, Ando H, Kimura Y, Oyama KI, Yoshida K. Unveiling the 6,8-Rearrangement in 8-Phenyl-5,7-dihydroxyflavylium and 8-Methyl-5,7-dihydroxyflavylium through Host-Guest Complexation. European J Org Chem 2017. [DOI: 10.1002/ejoc.201701009] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Nuno Basílio
- LAQV; REQUIMTE; Departamento de Química; Faculdade de Ciências e Tecnologia; Universidade Nova de Lisboa; 2829-516 Caparica Portugal
| | - João Carlos Lima
- LAQV; REQUIMTE; Departamento de Química; Faculdade de Ciências e Tecnologia; Universidade Nova de Lisboa; 2829-516 Caparica Portugal
| | - Luís Cruz
- REQUIMTE/LAQV; Departamento de Química e Bioquímica; Faculdade de Ciências e Tecnologia; Universidade do Porto; Rua do Campo Alegre 687 4169-007 Porto Portugal
| | - Victor de Freitas
- REQUIMTE/LAQV; Departamento de Química e Bioquímica; Faculdade de Ciências e Tecnologia; Universidade do Porto; Rua do Campo Alegre 687 4169-007 Porto Portugal
| | - Fernando Pina
- LAQV; REQUIMTE; Departamento de Química; Faculdade de Ciências e Tecnologia; Universidade Nova de Lisboa; 2829-516 Caparica Portugal
| | - Hiroki Ando
- Graduate School of Information Sciences; Nagoya University; 464-8601 Chikusa, Nagoya Japan
| | - Yuki Kimura
- Graduate School of Information Sciences; Nagoya University; 464-8601 Chikusa, Nagoya Japan
| | - Kin-Ichi Oyama
- Chemical Instrumentation Facility; Research Center for Materials Science; Nagoya University; 464-8602 Chikusa, Nagoya Japan
| | - Kumi Yoshida
- Graduate School of Informatics; Nagoya University; 464-8601 Chikusa Japan
| |
Collapse
|
11
|
Kimura Y, Oyama KI, Murata Y, Wakamiya A, Yoshida K. Synthesis of 8-Aryl-O-methylcyanidins and Their Usage for Dye-Sensitized Solar Cell Devices. Int J Mol Sci 2017; 18:ijms18020427. [PMID: 28212330 PMCID: PMC5343961 DOI: 10.3390/ijms18020427] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2016] [Revised: 02/03/2017] [Accepted: 02/09/2017] [Indexed: 11/18/2022] Open
Abstract
Anthocyanins as natural pigments are colorful and environmentally compatible dyes for dye-sensitized solar cells (DSSCs). To increase the efficiency, we designed and synthesized unnatural O-methylflavonols and O-methylcyanidins that possess an aryl group at the 8-position. We synthesized per-O-methylquercetin from quercetin, then using selective demethylation prepared various O-methylquercetins. Using the Suzuki-Miyaura coupling reaction, 8-arylation of per-O-methylquercetin was achieved. Using a LiAlH4 reduction or Clemmensen reduction, these flavonols were transformed to the corresponding cyanidin derivatives in satisfactory yields. Using these dyes, we fabricated DSSCs, and their efficiency was investigated. The efficiency of tetra-O-methylflavonol was 0.31%. However, the introduction of the 8-aryl residue increased the efficiency to 1.04%. In comparison to these flavonols, O-methylcyanidins exhibited a lower efficiency of 0.05% to 0.52%. The introduction of the 8-aryl group into the cyanidin derivatives did not result in a remarkable increase in the efficiency. These phenomena may be due to the poor fit of the HOMO-LUMO level of the dyes to the TiO2 conduction band.
Collapse
Affiliation(s)
- Yuki Kimura
- Graduate School of Information Science, Nagoya University, Chikusa, Nagoya 464-8601, Japan.
| | - Kin-Ichi Oyama
- Chemical Instrumentation Facility, Research Center for Materials Science, Nagoya University, Chikusa, Nagoya 464-8602, Japan.
| | - Yasujiro Murata
- Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan.
| | - Atsushi Wakamiya
- Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan.
| | - Kumi Yoshida
- Graduate School of Information Science, Nagoya University, Chikusa, Nagoya 464-8601, Japan.
| |
Collapse
|