1
|
Kaur T, Brooks AF, Lapsys A, Desmond TJ, Stauff J, Arteaga J, Winton WP, Scott PJH. Synthesis and Evaluation of a Fluorine-18 Radioligand for Imaging Huntingtin Aggregates by Positron Emission Tomographic Imaging. Front Neurosci 2021; 15:766176. [PMID: 34924935 PMCID: PMC8675899 DOI: 10.3389/fnins.2021.766176] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Accepted: 11/01/2021] [Indexed: 11/13/2022] Open
Abstract
Mutations in the huntingtin gene (HTT) triggers aggregation of huntingtin protein (mHTT), which is the hallmark pathology of neurodegenerative Huntington's disease (HD). Development of a high affinity 18F radiotracer would enable the study of Huntington's disease pathology using a non-invasive imaging modality, positron emission tomography (PET) imaging. Herein, we report the first synthesis of fluorine-18 imaging agent, 6-(5-((5-(2,2-difluoro-2-(fluoro-18F)ethoxy)pyridin-2-yl)methoxy)benzo[d]oxazol-2-yl)-2-methylpyridazin-3(2H)-one ([18F]1), a radioligand for HD and its preclinical evaluation in vitro (autoradiography of post-mortem HD brains) and in vivo (rodent and non-human primate brain PET). [18F]1 was synthesized in a 4.1% RCY (decay corrected) and in an average molar activity of 16.5 ± 12.5 GBq/μmol (445 ± 339 Ci/mmol). [18F]1 penetrated the blood-brain barrier of both rodents and primates, and specific saturable binding in post-mortem brain slices was observed that correlated to mHTT aggregates identified by immunohistochemistry.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Peter J. H. Scott
- Division of Nuclear Medicine, Department of Radiology, University of Michigan Medical School, Ann Arbor, MI, United States
| |
Collapse
|
2
|
Wu T, Moeller KD. Organic Electrochemistry: Expanding the Scope of Paired Reactions. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202100193] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Tiandi Wu
- Department of Chemistry Washington University St. Louis MO 63130 USA
| | - Kevin D. Moeller
- Department of Chemistry Washington University St. Louis MO 63130 USA
| |
Collapse
|
3
|
Wu T, Moeller KD. Organic Electrochemistry: Expanding the Scope of Paired Reactions. Angew Chem Int Ed Engl 2021; 60:12883-12890. [PMID: 33768678 DOI: 10.1002/anie.202100193] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 02/23/2021] [Indexed: 12/31/2022]
Abstract
Paired electrochemical reactions allow the optimization of both atom and energy economy of oxidation and reduction reactions. While many paired electrochemical reactions take advantage of perfectly matched reactions at the anode and cathode, this matching of substrates is not necessary. In constant current electrolysis, the potential at both electrodes adjusts to the substrates in solution. In principle, any oxidation reaction can be paired with any reduction reaction. Various oxidation reactions conducted on the anodic side of the electrolysis were paired with the generation and use of hydrogen gas at the cathode, showing the generality of the anodic process in a paired electrolysis and how the auxiliary reaction required for the oxidation could be used to generate a substrate for a non-electrolysis reaction. This is combined with variations on the cathodic side of the electrolysis to complete the picture and illustrate how oxidation and reduction reactions can be combined.
Collapse
Affiliation(s)
- Tiandi Wu
- Department of Chemistry, Washington University, St. Louis, MO, 63130, USA
| | - Kevin D Moeller
- Department of Chemistry, Washington University, St. Louis, MO, 63130, USA
| |
Collapse
|
4
|
Cao C, Yang Y, Li X, Liu Y, Liu H, Zhao Z, Chen L. Pd‐Catalyzed Cascade Metallo‐Ene Cyclization/Metallo‐Carbene Coupling of Allenamides. European J Org Chem 2021. [DOI: 10.1002/ejoc.202001625] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Chengqiang Cao
- School of Chemistry and Chemical Engineering Shandong University of Technology 266 West Xincun Road Zibo 255049 P. R. China
| | - Yi Yang
- School of Chemistry and Chemical Engineering Shandong University of Technology 266 West Xincun Road Zibo 255049 P. R. China
| | - Xin Li
- School of Chemistry and Chemical Engineering Shandong University of Technology 266 West Xincun Road Zibo 255049 P. R. China
| | - Yunxia Liu
- School of Chemistry and Chemical Engineering Shandong University of Technology 266 West Xincun Road Zibo 255049 P. R. China
| | - Hui Liu
- School of Chemistry and Chemical Engineering Shandong University of Technology 266 West Xincun Road Zibo 255049 P. R. China
| | - Zengdian Zhao
- School of Chemistry and Chemical Engineering Shandong University of Technology 266 West Xincun Road Zibo 255049 P. R. China
| | - Lei Chen
- School of Chemistry and Chemical Engineering Shandong University of Technology 266 West Xincun Road Zibo 255049 P. R. China
| |
Collapse
|
5
|
Yamamoto Y, Kawaguchi SI, Nishimura M, Sato Y, Shimada Y, Tabuchi A, Nomoto A, Ogawa A. Phosphorus-Recycling Wittig Reaction: Design and Facile Synthesis of a Fluorous Phosphine and Its Reusable Process in the Wittig Reaction. J Org Chem 2020; 85:14684-14696. [PMID: 33166463 DOI: 10.1021/acs.joc.0c01926] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
This study shows that phosphorus sources can be recycled using the appropriate fluorous phosphine in the Wittig reaction. The designed fluorous phosphine, which has an ethylene spacer between its phosphorus atom and the perfluoroalkyl group, was synthesized from air-stable phosphine reagents. The synthesized phosphine can be used for the Wittig reaction process to obtain various alkenes in adequate yields and stereoselectivity. The concomitantly formed fluorous phosphine oxide was extracted from the reaction mixture using a fluorous biphasic system. The fluorous phosphine was regenerated by reducing the fluorous phosphine oxide with diisobutylaluminum hydride. Finally, a series of gram scale phosphorus recycling processes were performed, which included the Wittig reaction, separation, reduction, and reuse.
Collapse
Affiliation(s)
- Yuki Yamamoto
- Department of Applied Chemistry, Graduate School of Engineering, Osaka Prefecture University, 1-1 Gakuen-cho, Nakaku, Sakai, Osaka 599-8531, Japan
| | - Shin-Ichi Kawaguchi
- Center for Education and Research in Agricultural Innovation, Faculty of Agriculture, Saga University, 152-1 Shonan-cho Karatsu, Saga 847-0021, Japan
| | - Misaki Nishimura
- Department of Applied Chemistry, Graduate School of Engineering, Osaka Prefecture University, 1-1 Gakuen-cho, Nakaku, Sakai, Osaka 599-8531, Japan
| | - Yuki Sato
- Department of Applied Chemistry, Graduate School of Engineering, Osaka Prefecture University, 1-1 Gakuen-cho, Nakaku, Sakai, Osaka 599-8531, Japan
| | - Yoshihisa Shimada
- Department of Applied Chemistry, Graduate School of Engineering, Osaka Prefecture University, 1-1 Gakuen-cho, Nakaku, Sakai, Osaka 599-8531, Japan
| | - Akihiro Tabuchi
- Department of Applied Chemistry, Graduate School of Engineering, Osaka Prefecture University, 1-1 Gakuen-cho, Nakaku, Sakai, Osaka 599-8531, Japan
| | - Akihiro Nomoto
- Department of Applied Chemistry, Graduate School of Engineering, Osaka Prefecture University, 1-1 Gakuen-cho, Nakaku, Sakai, Osaka 599-8531, Japan
| | - Akiya Ogawa
- Department of Applied Chemistry, Graduate School of Engineering, Osaka Prefecture University, 1-1 Gakuen-cho, Nakaku, Sakai, Osaka 599-8531, Japan
| |
Collapse
|
6
|
Shimanouchi T, Kitagawa Y, Kimura Y. Application of liposome membrane as the reaction field: A case study using the Horner-Wadsworth-Emmons reaction. J Biosci Bioeng 2019; 128:198-202. [PMID: 30827857 DOI: 10.1016/j.jbiosc.2019.01.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 01/21/2019] [Accepted: 01/23/2019] [Indexed: 10/27/2022]
Abstract
The properties of the liposome membrane as a reaction field were investigated by focusing on the Horner-Wadsworth-Emmons reaction as a case study. Use of the liposomes existing in the gel phase resulted in the enhanced activity of the substrates and furnished the products with same E/Z stereoselectivity as in the liposome-free system. The membrane environment in the gel phase most likely assisted the formation of adducts that induced selective generation of the E-isomer. The possible role of liposomes is to assist the proton removal from the reactant, rather than providing the basic interfacial environment.
Collapse
Affiliation(s)
- Toshinori Shimanouchi
- Graduate School of Environmental and Life Science, Okayama University, 3-1-1 Tsushima-Naka, Okayama 700-8530, Japan
| | - Yuki Kitagawa
- Graduate School of Environmental and Life Science, Okayama University, 3-1-1 Tsushima-Naka, Okayama 700-8530, Japan
| | - Yukitaka Kimura
- Graduate School of Environmental and Life Science, Okayama University, 3-1-1 Tsushima-Naka, Okayama 700-8530, Japan.
| |
Collapse
|
7
|
Zhang G, Li J, Yang C, Niu C, Bai Y, Liu Y, Peng J. Synthesis of novel poly(ethylene glycol)-containing imidazolium-functionalized phosphine ligands and their application in the hydrosilylation of olefins. Appl Organomet Chem 2018. [DOI: 10.1002/aoc.4296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Guodong Zhang
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education; Hangzhou Normal University; Hangzhou 311121 China
| | - Jiayun Li
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education; Hangzhou Normal University; Hangzhou 311121 China
| | - Chuang Yang
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education; Hangzhou Normal University; Hangzhou 311121 China
| | - Congbai Niu
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education; Hangzhou Normal University; Hangzhou 311121 China
| | - Ying Bai
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education; Hangzhou Normal University; Hangzhou 311121 China
| | - Yu Liu
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education; Hangzhou Normal University; Hangzhou 311121 China
| | - Jiajian Peng
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education; Hangzhou Normal University; Hangzhou 311121 China
| |
Collapse
|
8
|
Moghaddam FM, Pourkaveh R, Karimi A. Oxidative Heck Reaction as a Tool for Para-selective Olefination of Aniline: A DFT Supported Mechanism. J Org Chem 2017; 82:10635-10640. [DOI: 10.1021/acs.joc.7b01570] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Firouz Matloubi Moghaddam
- Laboratory of Organic Synthesis
and Natural Products, Department of Chemistry, Sharif University of Technology, Azadi Street, P.O. Box 111559516, Tehran, Iran
| | - Raheleh Pourkaveh
- Laboratory of Organic Synthesis
and Natural Products, Department of Chemistry, Sharif University of Technology, Azadi Street, P.O. Box 111559516, Tehran, Iran
| | - Ashkan Karimi
- Laboratory of Organic Synthesis
and Natural Products, Department of Chemistry, Sharif University of Technology, Azadi Street, P.O. Box 111559516, Tehran, Iran
| |
Collapse
|
9
|
Metternich JB, Artiukhin DG, Holland MC, von Bremen-Kühne M, Neugebauer J, Gilmour R. Photocatalytic E → Z Isomerization of Polarized Alkenes Inspired by the Visual Cycle: Mechanistic Dichotomy and Origin of Selectivity. J Org Chem 2017; 82:9955-9977. [DOI: 10.1021/acs.joc.7b01281] [Citation(s) in RCA: 96] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Jan B. Metternich
- Institute for Organic Chemistry, Westfälische Wilhelms-Universität Münster, Corrensstrasse 40, 48149 Münster, Germany
| | - Denis G. Artiukhin
- Institute for Organic Chemistry, Westfälische Wilhelms-Universität Münster, Corrensstrasse 40, 48149 Münster, Germany
| | - Mareike C. Holland
- Institute for Organic Chemistry, Westfälische Wilhelms-Universität Münster, Corrensstrasse 40, 48149 Münster, Germany
| | - Maximilian von Bremen-Kühne
- Institute for Organic Chemistry, Westfälische Wilhelms-Universität Münster, Corrensstrasse 40, 48149 Münster, Germany
| | - Johannes Neugebauer
- Institute for Organic Chemistry, Westfälische Wilhelms-Universität Münster, Corrensstrasse 40, 48149 Münster, Germany
| | - Ryan Gilmour
- Institute for Organic Chemistry, Westfälische Wilhelms-Universität Münster, Corrensstrasse 40, 48149 Münster, Germany
| |
Collapse
|