1
|
Abuhasan OM, El-Barghouthi MI, Bodoor K, Rawashdeh AMM, Assaf KI. Molecular recognition of tripeptides containing tryptophan by cucurbit[8]uril: A computational study. ARAB J CHEM 2023. [DOI: 10.1016/j.arabjc.2023.104819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023] Open
|
2
|
Molecular Dynamics and TD‐DFT Study of the Ternary Complexes of Cucurbit[8]uril with Aromatic Amino Acids and Auxiliary Ligands. ChemistrySelect 2022. [DOI: 10.1002/slct.202201988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
3
|
Pillar[6]arenes: From preparation, host-guest property to self-assembly and applications. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.08.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
4
|
Shi B, Zhao X, Chai Y, Qin P, Qu W, Lin Q, Zhang Y. Detection of L‐Aspartic Acid and L‐Glutamic Acid in Water Using a Fluorescent Nanoparticle Constructed by Pillar[5]arene‐Based Molecular Recognition. ChemistrySelect 2022. [DOI: 10.1002/slct.202200757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Bingbing Shi
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education Key Laboratory of Eco-environmental Polymer Materials of Gansu Province College of Chemistry and Chemical Engineering Northwest Normal University Lanzhou Gansu 730070 P. R. China
| | - Xing‐Xing Zhao
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education Key Laboratory of Eco-environmental Polymer Materials of Gansu Province College of Chemistry and Chemical Engineering Northwest Normal University Lanzhou Gansu 730070 P. R. China
| | - Yongping Chai
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education Key Laboratory of Eco-environmental Polymer Materials of Gansu Province College of Chemistry and Chemical Engineering Northwest Normal University Lanzhou Gansu 730070 P. R. China
| | - Peng Qin
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education Key Laboratory of Eco-environmental Polymer Materials of Gansu Province College of Chemistry and Chemical Engineering Northwest Normal University Lanzhou Gansu 730070 P. R. China
| | - Wen‐Juan Qu
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education Key Laboratory of Eco-environmental Polymer Materials of Gansu Province College of Chemistry and Chemical Engineering Northwest Normal University Lanzhou Gansu 730070 P. R. China
| | - Qi Lin
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education Key Laboratory of Eco-environmental Polymer Materials of Gansu Province College of Chemistry and Chemical Engineering Northwest Normal University Lanzhou Gansu 730070 P. R. China
| | - You‐Ming Zhang
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education Key Laboratory of Eco-environmental Polymer Materials of Gansu Province College of Chemistry and Chemical Engineering Northwest Normal University Lanzhou Gansu 730070 P. R. China
- Gansu Natural Energy Research Institute Lanzhou Gansu 730046 P. R. China
| |
Collapse
|
5
|
Kubik S. When Molecules Meet in Water-Recent Contributions of Supramolecular Chemistry to the Understanding of Molecular Recognition Processes in Water. ChemistryOpen 2022; 11:e202200028. [PMID: 35373466 PMCID: PMC8977507 DOI: 10.1002/open.202200028] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 03/17/2022] [Indexed: 12/19/2022] Open
Abstract
Molecular recognition processes in water differ from those in organic solvents in that they are mediated to a much greater extent by solvent effects. The hydrophobic effect, for example, causes molecules that only weakly interact in organic solvents to stay together in water. Such water-mediated interactions can be very efficient as demonstrated by many of the synthetic receptors discussed in this review, some of which have substrate affinities matching or even surpassing those of natural binders. However, in spite of considerable success in designing such receptors, not all factors determining their binding properties in water are fully understood. Existing concepts still provide plausible explanations why the reorganization of water molecules often causes receptor-substrate interactions in water to be strongly exothermic rather than entropically favored as predicted by the classical view of the hydrophobic effect.
Collapse
Affiliation(s)
- Stefan Kubik
- Technische Universität KaiserslauternFachbereich Chemie – Organische ChemieErwin-Schrödinger-Straße 5467663KaiserslauternGermany
| |
Collapse
|
6
|
El-Barghouthi MI, Bodoor K, Abuhasan OM, Assaf KI, Al Hourani BJ, Rawashdeh AMM. Binary and Ternary Complexes of Cucurbit[8]uril with Tryptophan, Phenylalanine, and Tyrosine: A Computational Study. ACS OMEGA 2022; 7:10729-10737. [PMID: 35382313 PMCID: PMC8973077 DOI: 10.1021/acsomega.2c00511] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 03/04/2022] [Indexed: 06/14/2023]
Abstract
Selective binding of amino acids, peptides, and proteins by synthetic molecules and elucidation of the geometry and dynamics of the resulting complexes and their strengths are active areas of contemporary research. In recent work, we analyzed via molecular dynamics (MD) simulations the complexes formed between cucurbit[7]uril (CB7) and three aromatic amino acids: tryptophan (W), phenylalanine (F), and tyrosine (Y). Herein, we continue this line of research by performing MD simulations lasting 100 ns to investigate the formation, stabilities, binding modes, dynamics, and specific host-guest noncovalent interactions contributing to the formation of the binary (1:1) and ternary (2:1) complexes in aqueous solution between W, F, and Y amino acids and cucurbit[8]uril (CB8). All complexes were found to be stable, with the binding in each complex dominated by one mode (except for the F-CB8 complex, which had two) characterized by encapsulation of the aromatic side chains of the amino acids within the cavity of CB8 and the exclusion of their ammonium and carboxylate groups. Using the molecular mechanics/Poisson-Boltzmann surface area method to estimate the individual contributions to the overall free energies of binding, results revealed that the key role is played by the amino acid side chains in stabilizing the complexes through their favorable van der Waals interactions with the CB8 cavity and the importance of favorable electrostatic interactions between the carbonyl portal of CB8 and the ammonium group of the amino acid. Visual analysis of structures of the ternary complexes indicated the presence of π-π stacking between the aromatic side chains of the included amino acids. The insights provided by this work may be of value for further efforts aiming to employ the recognition properties of CB8 toward amino acids in applications requiring more elaborate recognition of short peptides and proteins.
Collapse
Affiliation(s)
- Musa I. El-Barghouthi
- Department
of Chemistry, Faculty of Science, The Hashemite
University, P.O. Box 330127, Zarqa 13133, Jordan
| | - Khaled Bodoor
- Department
of Physics, The University of Jordan, Amman 11942, Jordan
| | - Osama M. Abuhasan
- Department
of Chemistry, Faculty of Science, The Hashemite
University, P.O. Box 330127, Zarqa 13133, Jordan
| | - Khaleel I. Assaf
- Faculty
of Science, Al-Balqa Applied University, Al-Salt 19117, Jordan
| | - Baker Jawabrah Al Hourani
- Department
of Biology and Chemistry, Embry Riddle Aeronautical
University, 3700 Willow
Creek Rd, Prescott, Arizona 86304, USA
| | | |
Collapse
|
7
|
Affiliation(s)
- Roymon Joseph
- Department of Chemistry Sacred Heart College (Autonomous), Thevara Kochi Kerala India – 682013
- Department of Chemistry University of Calicut Malappuram Kerala India – 673635
| |
Collapse
|
8
|
Ferguson Johns HP, Harrison EE, Stingley KJ, Waters ML. Mimicking Biological Recognition: Lessons in Binding Hydrophilic Guests in Water. Chemistry 2021; 27:6620-6644. [PMID: 33048395 DOI: 10.1002/chem.202003759] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Indexed: 01/25/2023]
Abstract
Selective molecular recognition of hydrophilic guests in water plays a fundamental role in a vast number of biological processes, but synthetic mimicry of biomolecular recognition in water still proves challenging both in terms of achieving comparable affinities and selectivities. This Review highlights strategies that have been developed in the field of supramolecular chemistry to selectively and non-covalently bind three classes of biologically relevant molecules: nucleotides, carbohydrates, and amino acids. As several groups have systematically modified receptors for a specific guest, an evolutionary perspective is also provided in some cases. Trends in the most effective binding forces for each class are described, providing insight into selectivity and potential directions for future work.
Collapse
Affiliation(s)
- Hannah P Ferguson Johns
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Emily E Harrison
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Kyla J Stingley
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Marcey L Waters
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| |
Collapse
|
9
|
Selective Recognition of Amino Acids and Peptides by Small Supramolecular Receptors. Molecules 2020; 26:molecules26010106. [PMID: 33379401 PMCID: PMC7796322 DOI: 10.3390/molecules26010106] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 12/14/2020] [Accepted: 12/22/2020] [Indexed: 12/30/2022] Open
Abstract
To this day, the recognition and high affinity binding of biomolecules in water by synthetic receptors remains challenging, while the necessity for systems for their sensing, transport and modulation persists. This problematic is prevalent for the recognition of peptides, which not only have key roles in many biochemical pathways, as well as having pharmacological and biotechnological applications, but also frequently serve as models for the study of proteins. Taking inspiration in nature and on the interactions that occur between several receptors and peptide sequences, many researchers have developed and applied a variety of different synthetic receptors, as is the case of macrocyclic compounds, molecular imprinted polymers, organometallic cages, among others, to bind amino acids, small peptides and proteins. In this critical review, we present and discuss selected examples of synthetic receptors for amino acids and peptides, with a greater focus on supramolecular receptors, which show great promise for the selective recognition of these biomolecules in physiological conditions. We decided to focus preferentially on small synthetic receptors (leaving out of this review high molecular weight polymeric systems) for which more detailed and accurate molecular level information regarding the main structural and thermodynamic features of the receptor biomolecule assemblies is available.
Collapse
|
10
|
Butler SM, Jolliffe KA. Molecular recognition and sensing of dicarboxylates and dicarboxylic acids. Org Biomol Chem 2020; 18:8236-8254. [PMID: 33001119 DOI: 10.1039/d0ob01761b] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The recognition and detection of dicarboxylic acids and dicarboxylates is of significance for a wide variety of applications, including medical diagnosis, monitoring of health and of environmental contaminants, and in industry. Hence small molecule receptors and sensors for dicarboxylic acids and dicarboxylates have great potential for applications in these fields. This review outlines the challenges faced in the recognition and detection of these species, strategies that have been used to obtain effective and observable interactions with dicarboxylic acids and dicarboxylates, and progress made in this field in the period from 2014 to 2020.
Collapse
Affiliation(s)
- Stephen M Butler
- School of Chemistry, The University of Sydney, NSW 2006, Australia.
| | - Katrina A Jolliffe
- School of Chemistry, The University of Sydney, NSW 2006, Australia. and The University of Sydney Nano Institute (Sydney Nano), The University of Sydney, NSW 2006, Australia
| |
Collapse
|
11
|
Yang JL, Yang YH, Xun YP, Wei KK, Gu J, Chen M, Yang LJ. Novel Amino-pillar[5]arene as a Fluorescent Probe for Highly Selective Detection of Au 3+ Ions. ACS OMEGA 2019; 4:17903-17909. [PMID: 31681900 PMCID: PMC6822224 DOI: 10.1021/acsomega.9b02951] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 10/01/2019] [Indexed: 06/10/2023]
Abstract
A novel fluorescent probe, amino-pillar[5]arene (APA), was prepared via a green, effective, and convenient synthetic method, which was characterized by nuclear magnetic resonance (NMR), infrared (IR), and high-resolution mass spectrometry. The fluorescence sensing behavior of the APA probe toward 22 metal ions in aqueous solutions were studied by fluorescence spectroscopy. The results showed that APA could be used as a selective fluorescent probe for the specificity detection of Au3+ ions. Moreover, the detection characteristics were investigated by fluorescence spectral titration, pH effect, fluorescence competitive experiments, Job's plot analysis, 1H NMR, and IR. The results indicated that detection of Au3+ ions by the APA probe could be achieved in the range of pH 1-13.5 and that other coexisting metal ions did not cause any marked interference. The titration analysis results indicated that the fluorescence intensity decreased as the concentration of Au3+ ions increased, with an excellent correlation (R 2 = 0.9942). The detection limit was as low as 7.59 × 10-8 mol·L-1, and the binding ratio of the APA probe with Au3+ ions was 2:1. Therefore, the APA probe has potential applications for detecting Au3+ ions in the environment and in living organisms.
Collapse
Affiliation(s)
- Jun-Li Yang
- School of Chemistry & Environment,
Key Laboratory of Intelligent Supramolecular Chemistry at the University
of Yunnan Province, National and Local Joint Engineering Research
Center for Green Preparation Technology of Biobased Materials, Yunnan Minzu University, Kunming 650500, P. R. China
| | - Yun-Han Yang
- School of Chemistry & Environment,
Key Laboratory of Intelligent Supramolecular Chemistry at the University
of Yunnan Province, National and Local Joint Engineering Research
Center for Green Preparation Technology of Biobased Materials, Yunnan Minzu University, Kunming 650500, P. R. China
| | - Yu-Peng Xun
- School of Chemistry & Environment,
Key Laboratory of Intelligent Supramolecular Chemistry at the University
of Yunnan Province, National and Local Joint Engineering Research
Center for Green Preparation Technology of Biobased Materials, Yunnan Minzu University, Kunming 650500, P. R. China
| | - Ke-Ke Wei
- School of Chemistry & Environment,
Key Laboratory of Intelligent Supramolecular Chemistry at the University
of Yunnan Province, National and Local Joint Engineering Research
Center for Green Preparation Technology of Biobased Materials, Yunnan Minzu University, Kunming 650500, P. R. China
| | - Jie Gu
- School of Chemistry & Environment,
Key Laboratory of Intelligent Supramolecular Chemistry at the University
of Yunnan Province, National and Local Joint Engineering Research
Center for Green Preparation Technology of Biobased Materials, Yunnan Minzu University, Kunming 650500, P. R. China
| | - Mei Chen
- School of Chemistry & Environment,
Key Laboratory of Intelligent Supramolecular Chemistry at the University
of Yunnan Province, National and Local Joint Engineering Research
Center for Green Preparation Technology of Biobased Materials, Yunnan Minzu University, Kunming 650500, P. R. China
| | - Li-Juan Yang
- School of Chemistry & Environment,
Key Laboratory of Intelligent Supramolecular Chemistry at the University
of Yunnan Province, National and Local Joint Engineering Research
Center for Green Preparation Technology of Biobased Materials, Yunnan Minzu University, Kunming 650500, P. R. China
| |
Collapse
|
12
|
Cao D, Meier H. Pillararene-based fluorescent sensors for the tracking of organic compounds. CHINESE CHEM LETT 2019. [DOI: 10.1016/j.cclet.2019.06.026] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
13
|
Duan Q, Zhang H, Mai W, Wang F, Lu K. Acid/base- and base/acid-switchable complexation between anionic-/cationic-pillar[6]arenes and a viologen ditosylate salt. Org Biomol Chem 2019; 17:4430-4434. [PMID: 30888007 DOI: 10.1039/c9ob00398c] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Two new host-guest complexes between water-soluble anionic pillar[6]arene (WP6) or cationic pillar[6]arene (CP6) and a viologen ditosylate salt G·2TsO were constructed, among which one formed from WP6 and G2+ ions can be controlled by the sequential addition of an acid and a base (HCl and NaOH, respectively), whereas the other fabricated from CP6 and TsO- ions can be switched through the sequential addition of basic and acidic reagents (NaOH and HCl, respectively).
Collapse
Affiliation(s)
- Qunpeng Duan
- School of Materials and Chemical Engineering, Henan University of Engineering, Zhengzhou, 450006, China.
| | | | | | | | | |
Collapse
|
14
|
Jeamet E, Septavaux J, Héloin A, Donnier-Maréchal M, Dumartin M, Ourri B, Mandal P, Huc I, Bignon E, Dumont E, Morell C, Francoia JP, Perret F, Vial L, Leclaire J. Wetting the lock and key enthalpically favours polyelectrolyte binding. Chem Sci 2019; 10:277-283. [PMID: 30746081 PMCID: PMC6335637 DOI: 10.1039/c8sc02966k] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Accepted: 10/06/2018] [Indexed: 12/30/2022] Open
Abstract
By using a combination of readily accessible experimental and computational experiments in water, we explored the factors governing the association between polyanionic dyn[4]arene and a series of α,ω-alkyldiammonium ions of increasing chain length. We found that the lock-and-key concept based on the best match between the apolar and polar regions of the molecular partners failed to explain the observed selectivities. Instead, the dissection of the energetic and structural contributions demonstrated that the binding events were actually guided by two crucial solvent-related phenomena as the chain length of the guest increases: the expected decrease of the enthalpic cost of guest desolvation and the unexpected increase of the favourable enthalpy of complex solvation. By bringing to light the decisive enthalpic impact of complex solvation during the binding of polyelectrolytes by inclusion, this study may provide a missing piece to a puzzle that one day could display the global picture of molecular recognition in water.
Collapse
Affiliation(s)
- Emeric Jeamet
- Institut de Chimie et Biochimie Moléculaires et Supramoléculaires , UMR 5246 CNRS , Université Claude Bernard Lyon1 , CPE Lyon , 43 Boulevard du 11 Novembre 1918 , 69622 Villeurbanne Cedex , France . ;
| | - Jean Septavaux
- Institut de Chimie et Biochimie Moléculaires et Supramoléculaires , UMR 5246 CNRS , Université Claude Bernard Lyon1 , CPE Lyon , 43 Boulevard du 11 Novembre 1918 , 69622 Villeurbanne Cedex , France . ;
| | - Alexandre Héloin
- Institut de Chimie et Biochimie Moléculaires et Supramoléculaires , UMR 5246 CNRS , Université Claude Bernard Lyon1 , CPE Lyon , 43 Boulevard du 11 Novembre 1918 , 69622 Villeurbanne Cedex , France . ;
| | - Marion Donnier-Maréchal
- Institut de Chimie et Biochimie Moléculaires et Supramoléculaires , UMR 5246 CNRS , Université Claude Bernard Lyon1 , CPE Lyon , 43 Boulevard du 11 Novembre 1918 , 69622 Villeurbanne Cedex , France . ;
| | - Melissa Dumartin
- Institut de Chimie et Biochimie Moléculaires et Supramoléculaires , UMR 5246 CNRS , Université Claude Bernard Lyon1 , CPE Lyon , 43 Boulevard du 11 Novembre 1918 , 69622 Villeurbanne Cedex , France . ;
| | - Benjamin Ourri
- Institut de Chimie et Biochimie Moléculaires et Supramoléculaires , UMR 5246 CNRS , Université Claude Bernard Lyon1 , CPE Lyon , 43 Boulevard du 11 Novembre 1918 , 69622 Villeurbanne Cedex , France . ;
| | - Pradeep Mandal
- Institut de Chimie et Biologie des Membranes et des Nano-objets , UMR 5248 CNRS , Université de Bordeaux , IPB , 2 rue Escarpit , 33600 Pessac , France
| | - Ivan Huc
- Institut de Chimie et Biologie des Membranes et des Nano-objets , UMR 5248 CNRS , Université de Bordeaux , IPB , 2 rue Escarpit , 33600 Pessac , France
| | - Emmanuelle Bignon
- Laboratoire de Chimie , UMR 5182 CNRS , Ecole Normale Supérieure de Lyon , Université Claude Bernard Lyon 1 , 46 Allée d'Italie , 69364 Lyon Cedex 07 , France .
- Institut des Sciences Analytiques , UMR 5280 CNRS , Université Claude Bernard Lyon 1 , Ecole Nationale Supérieure de Lyon , 5, rue de la Doua , 69100 Villeurbanne , France
| | - Elise Dumont
- Laboratoire de Chimie , UMR 5182 CNRS , Ecole Normale Supérieure de Lyon , Université Claude Bernard Lyon 1 , 46 Allée d'Italie , 69364 Lyon Cedex 07 , France .
| | - Christophe Morell
- Institut des Sciences Analytiques , UMR 5280 CNRS , Université Claude Bernard Lyon 1 , Ecole Nationale Supérieure de Lyon , 5, rue de la Doua , 69100 Villeurbanne , France
| | - Jean-Patrick Francoia
- Institut des Biomolécules Max Mousseron , UMR 5247 CNRS , Université de Montpellier , ENSCM , Place Eugène Bataillon , 34296 Montpellier Cedex 5 , France
| | - Florent Perret
- Institut de Chimie et Biochimie Moléculaires et Supramoléculaires , UMR 5246 CNRS , Université Claude Bernard Lyon1 , CPE Lyon , 43 Boulevard du 11 Novembre 1918 , 69622 Villeurbanne Cedex , France . ;
| | - Laurent Vial
- Institut de Chimie et Biochimie Moléculaires et Supramoléculaires , UMR 5246 CNRS , Université Claude Bernard Lyon1 , CPE Lyon , 43 Boulevard du 11 Novembre 1918 , 69622 Villeurbanne Cedex , France . ;
| | - Julien Leclaire
- Institut de Chimie et Biochimie Moléculaires et Supramoléculaires , UMR 5246 CNRS , Université Claude Bernard Lyon1 , CPE Lyon , 43 Boulevard du 11 Novembre 1918 , 69622 Villeurbanne Cedex , France . ;
| |
Collapse
|
15
|
Affiliation(s)
- Peter J. Cragg
- School of Pharmacy and Biomolecular Sciences; University of Brighton, Huxley Building, Moulsecoomb.; Brighton East Sussex BN2 4GJ UK
| |
Collapse
|