1
|
Doherty KE, Sandoval AL, Politano F, Witko ML, Schroeder CM, Brydon WP, Wadey GP, Ohlhorst KK, Leadbeater NE. Scale-up of Sodium Persulfate Mediated, Nitroxide Catalyzed Oxidative Functionalization Reactions. Curr Org Synth 2024; 21:941-946. [PMID: 37653636 DOI: 10.2174/1570179421666230831105337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 07/11/2023] [Accepted: 07/26/2023] [Indexed: 09/02/2023]
Abstract
BACKGROUND Oxidation is a valuable tool in preparative organic chemistry. Oxoammonium salts and nitroxides have proven valuable as reagents and catalysts in this endeavor. OBJECTIVE The objective of this study is to scale up the oxidative amidation, ester formation, and nitrile formation using nitroxide as an organocatalyst. METHODS Oxidative functionalization reactions were scaled from the 1 mmol to the 1 mole level. Sodium persulfate was used as the primary oxidant, and a nitroxide was employed as a catalyst. The products of the reactions were isolated in analytically pure form by extraction with no need for column chromatography. RESULTS The oxidative amidation and esterification of aldehydes can be scaled up from 1 mmol to 1 mole effectively, with comparable product yields being obtained at each increment. This work shows that conditions developed on a small scale can be transferred to a larger scale without reoptimization. The oxidative functionalization of aldehydes to prepare nitriles is not amenable to direct scale-up due to the concomitant formation of significant quantities of the corresponding carboxylic acid, thereby compromising the product yield. CONCLUSION Two of the three oxidative transformations studied here can be scaled up successfully from the 1 mmol to the 1 mole level.
Collapse
Affiliation(s)
- Katrina E Doherty
- Department of Chemistry, University of Connecticut, 55 North Eagleville Road, Storrs, CT 06269-3060, USA
| | - Arturo L Sandoval
- Department of Chemistry, University of Connecticut, 55 North Eagleville Road, Storrs, CT 06269-3060, USA
| | - Fabrizio Politano
- Department of Chemistry, University of Connecticut, 55 North Eagleville Road, Storrs, CT 06269-3060, USA
- Department of Organic Chemistry, Faculty of Chemical Sciences, National University of Córdoba, Córdoba, Argentina
| | - Mason L Witko
- Department of Chemistry, University of Connecticut, 55 North Eagleville Road, Storrs, CT 06269-3060, USA
| | - Chelsea M Schroeder
- Department of Chemistry, University of Connecticut, 55 North Eagleville Road, Storrs, CT 06269-3060, USA
| | - William P Brydon
- Department of Chemistry, University of Connecticut, 55 North Eagleville Road, Storrs, CT 06269-3060, USA
| | - Geoffrey P Wadey
- Department of Chemistry, University of Connecticut, 55 North Eagleville Road, Storrs, CT 06269-3060, USA
| | - Kristiane K Ohlhorst
- Department of Chemistry, University of Connecticut, 55 North Eagleville Road, Storrs, CT 06269-3060, USA
| | - Nicholas E Leadbeater
- Department of Chemistry, University of Connecticut, 55 North Eagleville Road, Storrs, CT 06269-3060, USA
| |
Collapse
|
2
|
Bray JM, Stephens SM, Weierbach SM, Vargas K, Lambert KM. Recent advancements in the use of Bobbitt's salt and 4-acetamidoTEMPO. Chem Commun (Camb) 2023; 59:14063-14092. [PMID: 37946555 DOI: 10.1039/d3cc04709a] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2023]
Abstract
Recent advances in synthetic methodologies for selective, oxidative transformations using Bobbitt's salt (4-acetamido-2,2,6,6-tetramethyl-1-oxopiperidinium tetrafluoroborate, 1) and its stable organic nitroxide counterpart ACT (4-acetamidoTEMPO, 4-acetamido-2,2,6,6-tetramethylpiperidine-1-oxyl, 2) have led to increased applications across a broad array of disciplines. Current applications and mechanistic understanding of these metal-free, environmentally benign, and easily accessible organic oxidants now span well-beyond the seminal use of 1 and 2 in selective alcohol oxidations. New synthetic methodologies for the oxidation of alcohols, ethers, amines, thiols, C-H bonds and other functional groups with 1 and 2 along with the field's current mechanistic understandings of these processes are presented alongside our contributions in this area. Exciting new areas harnessing the unique properties of these oxidants include: applications to drug discovery and natural product total synthesis, the development of new electrocatalytic methods for depolymerization of lignin and modification of other biopolymers, in vitro and in vivo nucleoside modifications, applications in supramolecular catalysis, the synthesis of new polymers and materials, enhancements in the design of organic redox flow batteries, uses in organic fuel cells, applications and advancements in energy storage, the development of electrochemical sensors, and the production of renewable fuels.
Collapse
Affiliation(s)
- Jean M Bray
- Department of Chemistry and Biochemistry, Old Dominion University, 4501 Elkhorn Ave, Norfolk, VA 23529, USA.
| | - Shannon M Stephens
- Department of Chemistry and Biochemistry, Old Dominion University, 4501 Elkhorn Ave, Norfolk, VA 23529, USA.
| | - Shayne M Weierbach
- Department of Chemistry and Biochemistry, Old Dominion University, 4501 Elkhorn Ave, Norfolk, VA 23529, USA.
| | - Karen Vargas
- Department of Chemistry and Biochemistry, Old Dominion University, 4501 Elkhorn Ave, Norfolk, VA 23529, USA.
| | - Kyle M Lambert
- Department of Chemistry and Biochemistry, Old Dominion University, 4501 Elkhorn Ave, Norfolk, VA 23529, USA.
| |
Collapse
|
3
|
Joy F, Peter F, Gokul PC, Nizam A, Chinnam S. UV-Promoted Metal- and Photocatalyst-Free Direct Conversion of Aromatic Aldehydes to Nitriles. RUSSIAN JOURNAL OF ORGANIC CHEMISTRY 2022. [DOI: 10.1134/s1070428022030174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
4
|
Iwabuchi Y, Nagasawa S. The Utility of Oxoammonium Species in Organic Synthesis: Beyond Alcohol Oxidation. HETEROCYCLES 2022. [DOI: 10.3987/rev-21-sr(r)2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
5
|
Meador RIL, Anderson RE, Chisholm JD. Tandem elimination-oxidation of tertiary benzylic alcohols with an oxoammonium salt. Org Biomol Chem 2021; 19:6233-6236. [PMID: 34231623 DOI: 10.1039/d1ob00965f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Tertiary benzylic alcohols react with oxoammonium salts, undergoing a tandem elimination/allylic oxidation to provide an allylic ether product in a single step. This mode of reactivity provides a rapid entry into allylic ethers from certain benzylic tertiary alcohols. The allylic ether may be cleaved under reductive conditions to reveal the allylic alcohol.
Collapse
Affiliation(s)
- Rowan I L Meador
- Department of Chemistry, Syracuse University, 1-014 Center for Science and Technology, Syracuse, NY 13244, USA.
| | - Robert E Anderson
- Department of Chemistry, Syracuse University, 1-014 Center for Science and Technology, Syracuse, NY 13244, USA.
| | - John D Chisholm
- Department of Chemistry, Syracuse University, 1-014 Center for Science and Technology, Syracuse, NY 13244, USA.
| |
Collapse
|
6
|
Nandi J, Leadbeater NE. Visible-light-driven catalytic oxidation of aldehydes and alcohols to nitriles by 4-acetamido-TEMPO using ammonium carbamate as a nitrogen source. Org Biomol Chem 2019; 17:9182-9186. [PMID: 31595927 DOI: 10.1039/c9ob01918a] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A mild and efficient route to prepare nitriles from aldehydes by combining photoredox catalysis with oxoammonium cations is reported. The reaction is performed using ammonium carbamate as the nitrogen source. The practicality of the method is increased by the extension of the dual catalytic system to one-pot two-step conversion of alcohols to nitriles.
Collapse
Affiliation(s)
- Jyoti Nandi
- Department of Chemistry, University of Connecticut, 55 North Eagleville Road, Storrs, Connecticut 06269, USA.
| | | |
Collapse
|
7
|
Yuan B, Tang Z, Lin Y, Wang G, Fang L, Guo X, Zhao Y, Xie X, Chen J, He R. Insights into the mechanisms of Cu(i)-catalyzed heterocyclization of α-acyl-α-alkynyl ketene dithioacetals to form 3-cyanofurans: the roles of NH4OAc. NEW J CHEM 2019. [DOI: 10.1039/c9nj04423j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
NH4OAc is decomposed into NH3 and HOAc, and both NH3 and HOAc as the proton shuttle can prompt catalytic reactions.
Collapse
|
8
|
Jung D, Jang SH, Yim T, Kim J. Oxidation Potential Tunable Organic Molecules and Their Catalytic Application to Aerobic Dehydrogenation of Tetrahydroquinolines. Org Lett 2018; 20:6436-6439. [PMID: 30277404 DOI: 10.1021/acs.orglett.8b02749] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
In this work, oxidation potential tunable organic molecules, alkyl 2-phenyl hydrazocarboxylates, were disclosed. The exquisite tuning of their oxidation potentials facilitated a catalytic dehydrogenation of 1,2,3,4-tetrahydroquinolines in the presence of Mn(Pc) and O2.
Collapse
Affiliation(s)
- Dahyeon Jung
- Department of Chemistry and Research Institute of Basic Sciences , Incheon National University , 119 Academy-ro , Yeonsu-gu , Incheon 22012 , Republic of Korea
| | - Seol Heui Jang
- Department of Chemistry and Research Institute of Basic Sciences , Incheon National University , 119 Academy-ro , Yeonsu-gu , Incheon 22012 , Republic of Korea
| | - Taeeun Yim
- Department of Chemistry and Research Institute of Basic Sciences , Incheon National University , 119 Academy-ro , Yeonsu-gu , Incheon 22012 , Republic of Korea
| | - Jinho Kim
- Department of Chemistry and Research Institute of Basic Sciences , Incheon National University , 119 Academy-ro , Yeonsu-gu , Incheon 22012 , Republic of Korea
| |
Collapse
|
9
|
Yuan L, Yin G, Zhang HY, Zhang Y, Zhao J. Aerobic oxidative conversion of benzylic alcohols with ammonia to nitriles catalyzed by CuCl/TEMPO/PIC. CHEMICAL PAPERS 2018. [DOI: 10.1007/s11696-018-0468-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|