1
|
Fosnacht KG, Pluth MD. Activity-Based Fluorescent Probes for Hydrogen Sulfide and Related Reactive Sulfur Species. Chem Rev 2024; 124:4124-4257. [PMID: 38512066 PMCID: PMC11141071 DOI: 10.1021/acs.chemrev.3c00683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
Hydrogen sulfide (H2S) is not only a well-established toxic gas but also an important small molecule bioregulator in all kingdoms of life. In contemporary biology, H2S is often classified as a "gasotransmitter," meaning that it is an endogenously produced membrane permeable gas that carries out essential cellular processes. Fluorescent probes for H2S and related reactive sulfur species (RSS) detection provide an important cornerstone for investigating the multifaceted roles of these important small molecules in complex biological systems. A now common approach to develop such tools is to develop "activity-based probes" that couple a specific H2S-mediated chemical reaction to a fluorescent output. This Review covers the different types of such probes and also highlights the chemical mechanisms by which each probe type is activated by specific RSS. Common examples include reduction of oxidized nitrogen motifs, disulfide exchange, electrophilic reactions, metal precipitation, and metal coordination. In addition, we also outline complementary activity-based probes for imaging reductant-labile and sulfane sulfur species, including persulfides and polysulfides. For probes highlighted in this Review, we focus on small molecule systems with demonstrated compatibility in cellular systems or related applications. Building from breadth of reported activity-based strategies and application, we also highlight key unmet challenges and future opportunities for advancing activity-based probes for H2S and related RSS.
Collapse
Affiliation(s)
- Kaylin G. Fosnacht
- Department of Chemistry and Biochemistry, Materials Science Institute, Knight Campus for Accelerating Scientific Impact, and Institute of Molecular Biology, University of Oregon, Eugene, Oregon, 97403-1253, United States
| | - Michael D. Pluth
- Department of Chemistry and Biochemistry, Materials Science Institute, Knight Campus for Accelerating Scientific Impact, and Institute of Molecular Biology, University of Oregon, Eugene, Oregon, 97403-1253, United States
| |
Collapse
|
2
|
Kong L, Lu W, Cao X, Wei Y, Sun J, Wang Y. The design strategies and biological applications of probes for the gaseous signaling molecule hydrogen sulfide. J Mater Chem B 2022; 10:7924-7954. [PMID: 36107014 DOI: 10.1039/d2tb01210c] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
H2S, the smallest and simplest biological thiol in living systems, is the third member of the family of signaling mediators. H2S participates in the regulation of a series of complex physiological and pathological functions in the body, making it a critical fulcrum that balances health and disease in human physiology. Small-molecule fluorescent probes have been proven to possess the unique advantages of high temporal and spatial resolution, good biocompatibility and high sensitivity, and thus their use is a powerful approach for monitoring the level and dynamics of H2S in living cells and organisms and better understanding its basic cellular functions. The field of small-molecule fluorescent probes for monitoring the complex biological activities of H2S in vivo has been thriving in recent years. Herein, we systematically summarize the latest developments in the field of fluorescent probes for the detection of H2S, illustrate their biological applications according to the classification of target-responsive sites, and emphasize the development direction and challenges of H2S-responsive fluorescent probes, hoping to give implications of researchers on fluorescent probes for future research.
Collapse
Affiliation(s)
- Lingxiu Kong
- Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250000, Shandong Province, China.
| | - Wenjuan Lu
- Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250000, Shandong Province, China.
| | - Xiaoli Cao
- Jinan Municipal Center for Disease Control and Prevention, Jinan 250021, Shandong, China
| | - Yongchun Wei
- Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250000, Shandong Province, China.
| | - Jiarao Sun
- Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250000, Shandong Province, China.
| | - Yanfeng Wang
- Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250000, Shandong Province, China.
| |
Collapse
|
3
|
Recent advances of small-molecule fluorescent probes for detecting biological hydrogen sulfide. Front Chem Sci Eng 2021. [DOI: 10.1007/s11705-021-2050-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
4
|
Wang J, Huo F, Yue Y, Yin C. A review: Red/near-infrared (NIR) fluorescent probes based on nucleophilic reactions of H 2 S since 2015. LUMINESCENCE 2020; 35:1156-1173. [PMID: 32954618 DOI: 10.1002/bio.3831] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 04/27/2020] [Accepted: 05/06/2020] [Indexed: 12/14/2022]
Abstract
The topics of human health and disease are always the focus of much attention. Hydrogen sulfide (H2 S), as a double-edged sword, plays an important role in biological systems. Studies have revealed that endogenous H2 S is important to maintain normal physiological functions. Conversely, abnormal levels of H2 S may contribute to various diseases. Due to the importance of H2 S in physiology and pathology, research into the effects of H2 S has been active in recent years. Fluorescent probes with red/near-infrared (NIR) emissions (620-900 nm) are more suitable for imaging applications in vivo, because of their negligible photodamage, deep tissue penetration, and maximum lack of interference from background autofluorescence. H2 S, an 'evil and positive' molecule, is not only toxic, but also produces significant effects; a 'greedy' molecule, is not only a strong nucleophile under physiological conditions, but also undergoes a continuous double nucleophilic reaction. Therefore, in this tutorial review, we will highlight recent advances made since 2015 in the development and application of red/NIR fluorescent probes based on nucleophilic reactions of H2 S.
Collapse
Affiliation(s)
- JunPing Wang
- Department of Chemistry, Xinzhou Teachers University, Xinzhou, Shanxi, China.,Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Molecular Science, Shanxi University, Taiyuan, China
| | - Fangjun Huo
- Research Institute of Applied Chemistry, Shanxi University, Taiyuan, China
| | - Yongkang Yue
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Molecular Science, Shanxi University, Taiyuan, China
| | - Caixia Yin
- Department of Chemistry, Xinzhou Teachers University, Xinzhou, Shanxi, China.,Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Molecular Science, Shanxi University, Taiyuan, China
| |
Collapse
|
5
|
Bezner BJ, Ryan LS, Lippert AR. Reaction-Based Luminescent Probes for Reactive Sulfur, Oxygen, and Nitrogen Species: Analytical Techniques and Recent Progress. Anal Chem 2019; 92:309-326. [DOI: 10.1021/acs.analchem.9b04990] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
6
|
Singha S, Jun YW, Sarkar S, Ahn KH. An Endeavor in the Reaction-Based Approach to Fluorescent Probes for Biorelevant Analytes: Challenges and Achievements. Acc Chem Res 2019; 52:2571-2581. [PMID: 31469267 DOI: 10.1021/acs.accounts.9b00314] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The promising features of fluorescence spectroscopy have inspired a quest for fluorescent probes for analysis and monitoring of molecular interactions in biochemical, medical, and environmental sciences. To overcome the competitive supramolecular interactions in aqueous media encountered with conventional molecular-recognition-based probes, the use of reaction-based probes that involve making or breaking of covalent bonds has emerged as a complementary sensing strategy to realize higher selectivity and sensitivity with larger spectroscopic changes. In spite of the enormous efforts, the development of reaction-based fluorescent probes meets with certain challenges in terms of their practical applications, demanding "intelligent design" of probes with an appropriate fluorophore attached to an efficient reactive moiety at the right place. This Account summarizes the results of our efforts made in the development and fine-tuning of reaction-based fluorescent probes toward those goals, classified by the type of analyte (anions, metal cations, and biomolecules) with notes on the challenges and achievements. The reaction-based approach was demonstrated to be powerful for the selective sensing of anions (cyanide and (amino)carboxylates) for the first time, and later it was extended to develop two-photon probes for bisulfite and fluoride ions. The reaction-based approach also enabled selective sensing of noble metal ions such as silver, gold, and palladium along with toxic (methyl)mercury species and paramagnetic copper ions. Furthermore, microscopic imaging and monitoring of biologically relevant species with reaction-based two-photon probes were explored for hydrogen sulfide, hypochlorous acid, formaldehyde, monoamine oxidase enzyme, and ATP.
Collapse
Affiliation(s)
- Subhankar Singha
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), 77 Cheongam-Ro, Nam-Gu, Pohang, Gyungbuk 37673, Republic of Korea
- Institute of Advanced Studies and Research, JIS University, Kolkata 700091, India
| | - Yong Woong Jun
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), 77 Cheongam-Ro, Nam-Gu, Pohang, Gyungbuk 37673, Republic of Korea
| | - Sourav Sarkar
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), 77 Cheongam-Ro, Nam-Gu, Pohang, Gyungbuk 37673, Republic of Korea
| | - Kyo Han Ahn
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), 77 Cheongam-Ro, Nam-Gu, Pohang, Gyungbuk 37673, Republic of Korea
| |
Collapse
|
7
|
Fluorescent hydrogen sulfide probes based on azonia-cyanine dyes and their imaging applications in organelles. Anal Chim Acta 2019; 1068:60-69. [DOI: 10.1016/j.aca.2019.03.057] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2018] [Revised: 03/11/2019] [Accepted: 03/28/2019] [Indexed: 12/11/2022]
|
8
|
Zhang G, Ni Y, Zhang D, Li H, Wang N, Yu C, Li L, Huang W. Rational design of NIR fluorescence probes for sensitive detection of viscosity in living cells. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2019; 214:339-347. [PMID: 30798216 DOI: 10.1016/j.saa.2019.02.068] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2018] [Revised: 12/21/2018] [Accepted: 02/17/2019] [Indexed: 06/09/2023]
Abstract
Developing near-infrared (NIR) fluorescence probes for detection of intracellular viscosity is still sufficiently challenging. In this work, three kinds of D-A-D type naphthyl and 2,1,3‑benzoxadiazol hybrid NIR dyes functionalized with amino (NY1), N‑methylamino (NY2) and N,N‑dimethylamino (NY3) groups for intracellular micro-viscosity detection were designed and synthesized. All the probes exhibited very weak NIR emission in low viscosity environment and obvious fluorescence enhancement with the increased viscosity. Different substituent groups had a high impact on the photophysical properties and response sensitive of the probes to viscosity. The structure-property relationships were systematic investigated. The results showed that stronger electron-donating ability and larger steric effect of N,N‑dimethylamino led to a narrower energy gap and more sensitive to viscosity environment. Therefore, NY3 exhibited higher signal noise ratio for viscosity detection and was successfully applied for imaging the changes of intracellular micro-viscosity. This work provides an efficient way to design powerful NIR fluorescence probes for viscosity detection.
Collapse
Affiliation(s)
- Gaobin Zhang
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Jiangsu National Synergetic In-novation Center for Advanced Materials (SICAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, PR China
| | - Yun Ni
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Jiangsu National Synergetic In-novation Center for Advanced Materials (SICAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, PR China
| | - Duoteng Zhang
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Jiangsu National Synergetic In-novation Center for Advanced Materials (SICAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, PR China
| | - Hao Li
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Jiangsu National Synergetic In-novation Center for Advanced Materials (SICAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, PR China
| | - Nanxiang Wang
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Jiangsu National Synergetic In-novation Center for Advanced Materials (SICAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, PR China
| | - Changmin Yu
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Jiangsu National Synergetic In-novation Center for Advanced Materials (SICAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, PR China.
| | - Lin Li
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Jiangsu National Synergetic In-novation Center for Advanced Materials (SICAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, PR China.
| | - Wei Huang
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Jiangsu National Synergetic In-novation Center for Advanced Materials (SICAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, PR China; Shaanxi Institute of Flexible Electronics (SIFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an 710072, PR China.
| |
Collapse
|
9
|
Qiao Z, Zhang H, Wang K, Zhang Y. A highly sensitive and responsive fluorescent probe based on 6-azide-chroman dye for detection and imaging of hydrogen sulfide in cells. Talanta 2019; 195:850-856. [DOI: 10.1016/j.talanta.2018.12.014] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 11/28/2018] [Accepted: 12/09/2018] [Indexed: 01/08/2023]
|
10
|
Asaithambi G, Periasamy V. Hydrogen sulfide detection by ESIPT based fluorescent sensor: Potential in living cells imaging. J Photochem Photobiol A Chem 2019. [DOI: 10.1016/j.jphotochem.2018.10.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
11
|
The synthesis, crystal, hydrogen sulfide detection and cell assement of novel chemsensors based on coumarin derivatives. Sci Rep 2018; 8:16159. [PMID: 30385799 PMCID: PMC6212500 DOI: 10.1038/s41598-018-34331-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Accepted: 10/17/2018] [Indexed: 01/29/2023] Open
Abstract
A series of chemsensors (1–4) containing fluorobenzene group based on coumarin derivatives have been developed for the selective and sensitive detection of H2S. The advantages of the synthesized fluorescent probe (compound 1) were the low detection limit (4 × 10−6 mol·L−1), good selectivity and high sensitivity which had been demonstrated through UV-vis, fluorescent titration experiments. Besides cytotoxicity test of compounds (1 and 2) was studied and the results indicated that compounds (1 and 2) showed almost no cytotoxicityat at a concentration of 150 μg·mL−1. The interacted mechanism was the thiolysis reaction of dinitrophenyl ether which had been confirmed by fluorescence and HRMS titration experiment. In addition, probe 1 can also detect HS− selectively by naked eye in pure DMSO solvent.
Collapse
|
12
|
Jung Y, Jung J, Huh Y, Kim D. Benzo[ g]coumarin-Based Fluorescent Probes for Bioimaging Applications. JOURNAL OF ANALYTICAL METHODS IN CHEMISTRY 2018; 2018:5249765. [PMID: 30013807 PMCID: PMC6022312 DOI: 10.1155/2018/5249765] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Accepted: 04/22/2018] [Indexed: 05/12/2023]
Abstract
Benzo[g]coumarins, which consist of coumarins fused with other aromatic units in the linear shape, have recently emerged as an interesting fluorophore in the bioimaging research. The pi-extended skeleton with the presence of electron-donating and electron-withdrawing substituents from the parent coumarins changes the basic photophysical parameters such as absorption and fluorescence emission significantly. Most of the benzo[g]coumarin analogues show red/far-red fluorescence emission with high two-photon absorbing property that can be applicable for the two-photon microscopy (TPM) imaging. In this review, we summarized the recently developed benzo[g]coumarin analogues including photophysical properties, synthesis, and applications for molecular probes that can sense biologically important species such as metal ions, cell organs, reactive species, and disease biomarkers.
Collapse
Affiliation(s)
- Yuna Jung
- Department of Biomedical Science, Graduate School, Kyung Hee University, 26 Kyungheedae-Ro, Dongdaemun-Gu, Seoul 02447, Republic of Korea
| | - Junyang Jung
- Department of Biomedical Science, Graduate School, Kyung Hee University, 26 Kyungheedae-Ro, Dongdaemun-Gu, Seoul 02447, Republic of Korea
- Department of Anatomy and Neurobiology, College of Medicine, Kyung Hee University, 26 Kyungheedae-Ro, Dongdaemun-Gu, Seoul 02447, Republic of Korea
| | - Youngbuhm Huh
- Department of Biomedical Science, Graduate School, Kyung Hee University, 26 Kyungheedae-Ro, Dongdaemun-Gu, Seoul 02447, Republic of Korea
- Department of Anatomy and Neurobiology, College of Medicine, Kyung Hee University, 26 Kyungheedae-Ro, Dongdaemun-Gu, Seoul 02447, Republic of Korea
| | - Dokyoung Kim
- Department of Biomedical Science, Graduate School, Kyung Hee University, 26 Kyungheedae-Ro, Dongdaemun-Gu, Seoul 02447, Republic of Korea
- Department of Anatomy and Neurobiology, College of Medicine, Kyung Hee University, 26 Kyungheedae-Ro, Dongdaemun-Gu, Seoul 02447, Republic of Korea
- Center for Converging Humanities, Kyung Hee University, 26 Kyungheedae-Ro, Dongdaemun-Gu, Seoul 02447, Republic of Korea
| |
Collapse
|