1
|
Farajat D, Zhang Y, Li CJ. Magic methylation with methyl-containing peroxides. Chem Sci 2025; 16:507-529. [PMID: 39640027 PMCID: PMC11615666 DOI: 10.1039/d4sc05620e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 11/26/2024] [Indexed: 12/07/2024] Open
Abstract
Methyl groups rank among the most abundant carbon fragments found in natural products and small-molecule pharmaceuticals. The late-stage and environmentally friendly installation of these groups onto biologically active molecules has attracted widespread attention in both industry and academia. In 2008, we published the first use of a methyl radical derived from a peroxide toward a directed transition-metal catalysed C-H methylation. In the past sixteen years, methyl-containing peroxides have proven themselves as robust reagents for introducing methyl groups onto organic molecules. In this review, our goal is to provide a thorough summary of the research advancements achieved in this field thus far.
Collapse
Affiliation(s)
- Daliah Farajat
- Department of Chemistry, McGill University 801 Sherbrooke Street West Montreal Quebec H3A 2K6 Canada
| | - Yuhua Zhang
- Accustandard Inc. 125 Market Street New Haven Connecticut 06513 USA
| | - Chao-Jun Li
- Department of Chemistry, McGill University 801 Sherbrooke Street West Montreal Quebec H3A 2K6 Canada
- FRQNT Centre for Green Chemistry and Catalysis Canada
| |
Collapse
|
2
|
Zhang CP, Wang TZ, Liang YF. Manganese-promoted reductive cross-coupling of disulfides with dialkyl carbonates. Chem Commun (Camb) 2023; 59:14439-14442. [PMID: 37982295 DOI: 10.1039/d3cc04862d] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2023]
Abstract
Manganese is a cheap and environmentally friendly metal on Earth. Herein, we report a manganese-promoted reductive cross-coupling using easily available and odorless disulfides as thiolating agents in an excellent 100% sulfur atom economy. The protocol featured a broad substrate scope, including various alkyl disulfides and excellent functional group compatibility, constructing diverse thioethers under simple conditions. Ultimately, thioethers can be prepared in gram-scale reactions and further transformed into structurally complex molecules.
Collapse
Affiliation(s)
- Chao-Peng Zhang
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China.
| | - Tian-Zhang Wang
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China.
| | - Yu-Feng Liang
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China.
| |
Collapse
|
3
|
Wang J, Moon SH, Cleary MB, Shoup TM, El Fakhri G, Zhang Z, Brownell AL. Detailed radiosynthesis of [ 18 F]mG4P027 as a positron emission tomography radiotracer for mGluR4. J Labelled Comp Radiopharm 2023; 66:34-40. [PMID: 36593743 PMCID: PMC9985952 DOI: 10.1002/jlcr.4011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/25/2022] [Accepted: 12/29/2022] [Indexed: 01/04/2023]
Abstract
We report here the detailed radiosynthesis of [18 F]mG4P027, a metabotropic glutamate receptor 4 (mGluR4) PET radiotracer, which showed superior properties to the currently reported mGluR4 radiotracers. The radiosynthesis in the automated system has been challenging, therefore we disclose here the major limiting factors for the synthesis via step-by-step examination. And we hope this thorough study will help its automation for human use in the future.
Collapse
Affiliation(s)
| | | | - Michael B. Cleary
- Martinos Center for Biomedical Imaging, Massachusetts General Hospital & Department of Radiology, Harvard Medical School, Boston, MA 02114 (USA)
| | | | | | - Zhaoda Zhang
- Martinos Center for Biomedical Imaging, Massachusetts General Hospital & Department of Radiology, Harvard Medical School, Boston, MA 02114 (USA)
| | | |
Collapse
|
4
|
Gao Q, Sun Z, Wu M, Guo Y, Han X, Yan J, Ha MN, Le QM, Xu Y. Di- tert-butyl peroxide as an effective two-carbon unit in oxidative radical cyclization toward 7-methylazolo[1,5- a]pyrimidines. Org Chem Front 2022. [DOI: 10.1039/d2qo00381c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
An unexpected oxidative radical cyclization with DTBP as the C2 cyclic unit enables the assembly of privileged 7-methylazolo[1,5-a]pyrimidines.
Collapse
Affiliation(s)
- Qinghe Gao
- School of Pharmacy, Xinxiang Medical University, Xinxiang, Henan 453003, P. R. China
| | - Zhenhua Sun
- School of Pharmacy, Xinxiang Medical University, Xinxiang, Henan 453003, P. R. China
| | - Manman Wu
- School of Pharmacy, Xinxiang Medical University, Xinxiang, Henan 453003, P. R. China
| | - Yimei Guo
- School of Pharmacy, Xinxiang Medical University, Xinxiang, Henan 453003, P. R. China
| | - Xinya Han
- School of Chemistry and Chemical Engineering, Anhui University of Technology, Maanshan, Anhui 243002, P. R. China
| | - Jufen Yan
- School of Chemistry and Chemical Engineering, Anhui University of Technology, Maanshan, Anhui 243002, P. R. China
| | - Minh Ngoc Ha
- VNU Key Laboratory of Advanced Materials for Green Growth, Faculty of Chemistry, University of Science, Vietnam National University, Hanoi 100000, Vietnam
| | - Quynh Mai Le
- Department of Plant Science, Faculty of Biology, University of Science, Vietnam National University, Hanoi 100000, Vietnam
| | - Yongtao Xu
- School of Medical Engineering, Henan International Joint Laboratory of Neural Information analysis and Drug Intelligent Design, Xinxiang Medical University, Xinxiang, Henan 453003, P. R. China
| |
Collapse
|
5
|
Moulay S. S-methylation of organosulfur substrates: A comprehensive overview. PHOSPHORUS SULFUR 2021. [DOI: 10.1080/10426507.2021.1925672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Saad Moulay
- Laboratoire de Chimie-Physique Moléculaire et Macromoléculaire, Département de Génie des Procédés, Faculté de Technologie, Université Saâd Dahlab de Blida, Blida, Algeria
| |
Collapse
|
6
|
Recent Advances in the Synthesis of Sulfides, Sulfoxides and Sulfones via C-S Bond Construction from Non-Halide Substrates. Catalysts 2020. [DOI: 10.3390/catal10111339] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The construction of a C-S bond is a powerful strategy for the synthesis of sulfur containing compounds including sulfides, sulfoxides, and sulfones. Recent methodological developments have revealed lots of novel protocols for C-S bond formation, providing easy access to sulfur containing compounds. Unlike traditional Ullmann typed C-S coupling reaction, the recently developed reactions frequently use non-halide compounds, such as diazo compounds and simple arenes/alkanes instead of aryl halides as substrates. On the other hand, novel C-S coupling reaction pathways involving thiyl radicals have emerged as an important strategy to construct C-S bonds. In this review, we focus on the recent advances on the synthesis of sulfides, sulfoxides, and sulfones from non-halide substrates involving C-S bond construction.
Collapse
|
7
|
Mruk J, Pazderski L, Ścianowski J, Wojtczak A. Structural and NMR spectroscopic studies of 2-phenylsulfanylpyridine and its analogues or derivatives, and their Au(III) chloride complexes. Inorganica Chim Acta 2020. [DOI: 10.1016/j.ica.2019.119182] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
8
|
Qin H, Li Q, Xu J, Zhang J, Qu W, Liu W, Feng F, Sun H. A Mild and Direct C(sp 3)-S Cross-Coupling of Oxindoles with Thiols: Synthesis of Unsymmetrical 3-Thiooxindoles. J Org Chem 2019; 84:14342-14348. [PMID: 31580081 DOI: 10.1021/acs.joc.9b02205] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Herein, an operationally simple and mild strategy to construct sulfenation of oxindoles with a series of thiols in the absence of transition metals was developed. This methodology provides an efficient way to directly form a C-S bond at the C-3 position of oxindoles under mild reaction conditions with a cheap and common solvent and base in moderate to good yields.
Collapse
Affiliation(s)
- Hui Qin
- Department of Natural Medicinal Chemistry , China Pharmaceutical University , Nanjing 211198 , China
| | - Qi Li
- Department of Medicinal Chemistry , China Pharmaceutical University , Nanjing 210009 , China
| | - Jian Xu
- Department of Natural Medicinal Chemistry , China Pharmaceutical University , Nanjing 211198 , China
| | - Jie Zhang
- Department of Natural Medicinal Chemistry , China Pharmaceutical University , Nanjing 211198 , China
| | - Wei Qu
- Department of Natural Medicinal Chemistry , China Pharmaceutical University , Nanjing 211198 , China.,Key Laboratory of Biomedical Functional Materials , China Pharmaceutical University , Nanjing 211198 , China
| | - Wenyuan Liu
- Department of Pharmaceutical Analysis , China Pharmaceutical University , Nanjing 210009 , China
| | - Feng Feng
- Department of Natural Medicinal Chemistry , China Pharmaceutical University , Nanjing 211198 , China.,Key Laboratory of Biomedical Functional Materials , China Pharmaceutical University , Nanjing 211198 , China.,Jiangsu Food and Pharmaceutical Science College , Huai'an 223003 , China
| | - Haopeng Sun
- Department of Medicinal Chemistry , China Pharmaceutical University , Nanjing 210009 , China
| |
Collapse
|
9
|
Abstract
Carbon-carbon bond fragmentations are useful methods for the functionalization of molecules. The value of such cleavage events is maximized when paired with subsequent bond formation. Herein we report a protocol for the cleavage of an alkene C(sp3)-C(sp2) bond, followed by the formation of a new C(sp3)-S bond. This reaction is performed in nonanhydrous solvent and open to the air, employs common starting materials, and can be used to rapidly diversify natural products.
Collapse
Affiliation(s)
- Andrew J Smaligo
- Department of Chemistry and Biochemistry , University of California, Los Angeles , Los Angeles , California 90095-1569 , United States
| | - Ohyun Kwon
- Department of Chemistry and Biochemistry , University of California, Los Angeles , Los Angeles , California 90095-1569 , United States
| |
Collapse
|
10
|
Zhang B, Fan Z, Guo Z, Xi C. Reduction of CO2 with NaBH4/I2 for the Conversion of Thiophenols to Aryl Methyl Sulfides. J Org Chem 2019; 84:8661-8667. [DOI: 10.1021/acs.joc.9b01180] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Bo Zhang
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Zhengning Fan
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Zhiqiang Guo
- Scientific Instrument Center, Shanxi University, Taiyuan 030006, China
| | - Chanjuan Xi
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, China
- State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, China
| |
Collapse
|