1
|
Bektas N, Aydogan A. A poly-pseudorotaxane constructed by threading pillar[5]arene onto an ion-pair recognition-based calix[4]pyrrole supramolecular polymer. Org Biomol Chem 2023; 21:1862-1867. [PMID: 36799237 DOI: 10.1039/d2ob02268k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Abstract
The ion-pair recognition ability of calix[4]pyrrole was utilized to form a multicomponent monomeric assembly and a linear supramolecular polymer via concurrent anion and bis-cation complexation. The inherent dynamic interactions of these assemblies were further used to construct pseudorotaxanes in monomeric and supramolecular polymer forms with pillar[5]arene.
Collapse
Affiliation(s)
- Necla Bektas
- Department of Chemistry, Istanbul Technical University, Maslak 34469, Istanbul, Türkiye.
| | - Abdullah Aydogan
- Department of Chemistry, Istanbul Technical University, Maslak 34469, Istanbul, Türkiye.
| |
Collapse
|
2
|
Construction of unique pseudo[1]rotaxanes and [1]rotaxanes based on mono-functionalized pillar[5]arene Schiff bases. J INCL PHENOM MACRO 2022. [DOI: 10.1007/s10847-022-01165-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
3
|
Ma L, Han Y, Yan C, Chen T, Wang Y, Yao Y. Construction and Property Investigation of Serial Pillar[5]arene-Based [1]Rotaxanes. Front Chem 2022; 10:908773. [PMID: 35747345 PMCID: PMC9210957 DOI: 10.3389/fchem.2022.908773] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 04/08/2022] [Indexed: 01/16/2023] Open
Abstract
Although the construction and application of pillar[5]arene-based [1]rotaxanes have been extensively studied, the types of stoppers for them are limited. In this work, we designed and prepared three series of pillar[5]arene-based [1]rotaxanes (P5[1]Rs) with pentanedione derivatives, azobenzene derivatives, and salicylaldehyde derivatives as the stoppers, respectively. The obtained P5[1]Rs were fully characterized by NMR (1H, 13C, and 2D), mass spectra, and single-crystal X-ray analysis. We found that the synergic C-H···π, C-H···O interactions and N-H···O, O-H···N hydrogen bonding are the key to the stability of [1]rotaxanes. This work not only enriched the diversity of pillar[n]arene family but also gave a big boost to the pillar[n]arene-based mechanically interlocked molecules.
Collapse
Affiliation(s)
- Longtao Ma
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, China
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, China
| | - Ying Han
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, China
| | - Chaoguo Yan
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, China
| | - Tingting Chen
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, China
| | - Yang Wang
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, China
| | - Yong Yao
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, China
| |
Collapse
|
4
|
Kato K, Fa S, Ohtani S, Shi TH, Brouwer AM, Ogoshi T. Noncovalently bound and mechanically interlocked systems using pillar[ n]arenes. Chem Soc Rev 2022; 51:3648-3687. [PMID: 35445234 DOI: 10.1039/d2cs00169a] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Pillar[n]arenes are pillar-shaped macrocyclic compounds owing to the methylene bridges linking the para-positions of the units. Owing to their unique pillar-shaped structures, these compounds exhibit various excellent properties compared with other cyclic host molecules, such as versatile functionality using various organic synthesis techniques, substituent-dependent solubility, cavity-size-dependent host-guest properties in organic media, and unit rotation along with planar chiral inversion. These advantages have enabled the high-yield synthesis and rational design of pillar[n]arene-based mechanically interlocked molecules (MIMs). In particular, new types of pillar[n]arene-based MIMs that can dynamically convert between interlocked and unlocked states through unit rotation have been produced. The highly symmetrical pillar-shaped structures of pillar[n]arenes result in simple NMR spectra, which are useful for studying the motion of pillar[n]arene wheels in MIMs and creating sophisticated MIMs with higher-order structures. The creation and application of polymeric MIMs based on pillar[n]arenes is also discussed.
Collapse
Affiliation(s)
- Kenichi Kato
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto, 615-8510, Japan.
| | - Shixin Fa
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto, 615-8510, Japan.
| | - Shunsuke Ohtani
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto, 615-8510, Japan.
| | - Tan-Hao Shi
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto, 615-8510, Japan.
| | - Albert M Brouwer
- van't Hoff Institute for Molecular Sciences, University of Amsterdam, P.O. Box 94157, 1090 GD Amsterdam, The Netherlands.
| | - Tomoki Ogoshi
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto, 615-8510, Japan. .,WPI Nano Life Science Institute, Kanazawa University, Kakuma-machi, Kanazawa, 920-1192, Japan
| |
Collapse
|
5
|
Nazarova A, Padnya P, Cragg PJ, Stoikov I. [1]Rotaxanes based on phosphorylated pillar[5]arenes. NEW J CHEM 2022. [DOI: 10.1039/d1nj05461a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
[1]Rotaxanes based on monosubstituted phosphorus-containing pillar[5]arenes have been synthesized by the Kabachnik–Fields reaction for the first time in good yields.
Collapse
Affiliation(s)
- Anastasia Nazarova
- A. M. Butlerov Chemical Institute, Kazan Federal University, Kremlevskaya, 18, Kazan 420008, Russian Federation
| | - Pavel Padnya
- A. M. Butlerov Chemical Institute, Kazan Federal University, Kremlevskaya, 18, Kazan 420008, Russian Federation
| | - Peter J. Cragg
- School of Applied Sciences, University of Brighton, Brighton BN2 4GJ, UK
| | - Ivan Stoikov
- A. M. Butlerov Chemical Institute, Kazan Federal University, Kremlevskaya, 18, Kazan 420008, Russian Federation
| |
Collapse
|
6
|
Li D, Han Y, Sun J, Liu WL, Yan CG. Convenient construction of unique bis-[1]rotaxanes based on azobenzene-bridged dipillar[5]arenes. J INCL PHENOM MACRO 2021. [DOI: 10.1007/s10847-021-01115-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
7
|
Tian H, Li R, Lin PH, Meguellati K. Synthesis of a new solvent-responsive pillar[5]arene-based [1]rotaxane molecular machine. NEW J CHEM 2020. [DOI: 10.1039/d0nj01859g] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
In this work, we designed a new pillar[5]arene-based molecular machine responsive to the polarity of different solvents, which can exist in an interlocked structure in CDCl3 and CD3OD, and can exist in an extended form in DMSO and was studied by 1H and 2D NMR spectroscopy, HR(MS) and fluorescence spectroscopy.
Collapse
Affiliation(s)
- Huasheng Tian
- International Joint Research Laboratory of Nano-Micro Architecture Chemistry (NMAC)
- College of Chemistry
- Jilin University
- Changchun 130012
- P. R. China
| | - Runan Li
- International Joint Research Laboratory of Nano-Micro Architecture Chemistry (NMAC)
- College of Chemistry
- Jilin University
- Changchun 130012
- P. R. China
| | - Po-Han Lin
- International Joint Research Laboratory of Nano-Micro Architecture Chemistry (NMAC)
- College of Chemistry
- Jilin University
- Changchun 130012
- P. R. China
| | - Kamel Meguellati
- International Joint Research Laboratory of Nano-Micro Architecture Chemistry (NMAC)
- College of Chemistry
- Jilin University
- Changchun 130012
- P. R. China
| |
Collapse
|
8
|
Gibson HW, Huang F, Zhao R, Shao L, Zakharov LN, Slebodnick C, Rheingold AL. An Inhospitable Cryptand: The Importance of Conformational Freedom in Host-Guest Complexation. European J Org Chem 2019. [DOI: 10.1002/ejoc.201900038] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Harry W. Gibson
- Department of Chemistry; Virginia Tech; 24060 Blacksburg VA USA
| | - Feihe Huang
- Department of Chemistry; Virginia Tech; 24060 Blacksburg VA USA
- State Key Laboratory of Chemical Engineering; Center for Chemistry of High-Performance & Novel Materials; Zhejiang University; Hangzhou P R China
| | - Run Zhao
- State Key Laboratory of Chemical Engineering; Center for Chemistry of High-Performance & Novel Materials; Zhejiang University; Hangzhou P R China
| | - Li Shao
- State Key Laboratory of Chemical Engineering; Center for Chemistry of High-Performance & Novel Materials; Zhejiang University; Hangzhou P R China
| | - Lev N. Zakharov
- Department of Chemistry; University of California; 92093-0358 San Diego, La Jolla CA USA
| | | | - Arnold L. Rheingold
- Department of Chemistry; University of California; 92093-0358 San Diego, La Jolla CA USA
| |
Collapse
|
9
|
Zhao Q, Chen Y, Sun B, Qian C, Cheng M, Jiang J, Lin C, Wang L. Pillar[5]arene Based Pseudo[1]rotaxane Operating as Acid/Base-Controllable Two State Molecular Shuttle. European J Org Chem 2019. [DOI: 10.1002/ejoc.201900075] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Qian Zhao
- Jiangsu Key Laboratory of Advanced Organic Materials; School of Chemistry and Chemical Engineering; Nanjing University; 163 Xianlin Avenue 210023 Nanjing China
| | - Yuan Chen
- Jiangsu Key Laboratory of Advanced Organic Materials; School of Chemistry and Chemical Engineering; Nanjing University; 163 Xianlin Avenue 210023 Nanjing China
| | - Baobao Sun
- Jiangsu Key Laboratory of Advanced Organic Materials; School of Chemistry and Chemical Engineering; Nanjing University; 163 Xianlin Avenue 210023 Nanjing China
| | - Cheng Qian
- Jiangsu Key Laboratory of Advanced Organic Materials; School of Chemistry and Chemical Engineering; Nanjing University; 163 Xianlin Avenue 210023 Nanjing China
| | - Ming Cheng
- Jiangsu Key Laboratory of Advanced Organic Materials; School of Chemistry and Chemical Engineering; Nanjing University; 163 Xianlin Avenue 210023 Nanjing China
| | - Juli Jiang
- Jiangsu Key Laboratory of Advanced Organic Materials; School of Chemistry and Chemical Engineering; Nanjing University; 163 Xianlin Avenue 210023 Nanjing China
| | - Chen Lin
- Jiangsu Key Laboratory of Advanced Organic Materials; School of Chemistry and Chemical Engineering; Nanjing University; 163 Xianlin Avenue 210023 Nanjing China
| | - Leyong Wang
- Jiangsu Key Laboratory of Advanced Organic Materials; School of Chemistry and Chemical Engineering; Nanjing University; 163 Xianlin Avenue 210023 Nanjing China
- School of Petrochemical Engineering; School of Chemistry and Chemical Engineering; Changzhou University; 213164 Changzhou China
| |
Collapse
|
10
|
Yang K, Chao S, Zhang F, Pei Y, Pei Z. Recent advances in the development of rotaxanes and pseudorotaxanes based on pillar[n]arenes: from construction to application. Chem Commun (Camb) 2019; 55:13198-13210. [DOI: 10.1039/c9cc07373f] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
This article summarizes recent advances in the development of rotaxanes and pseudorotaxanes based on pillar[n]arenes: from construction to application.
Collapse
Affiliation(s)
- Kui Yang
- Shaanxi Key Laboratory of Natural Products & Chemical Biology
- College of Che-mistry & Pharmacy
- Northwest A&F University
- Yangling 712100
- P. R. China
| | - Shuang Chao
- Shaanxi Key Laboratory of Natural Products & Chemical Biology
- College of Che-mistry & Pharmacy
- Northwest A&F University
- Yangling 712100
- P. R. China
| | - Feiyu Zhang
- Shaanxi Key Laboratory of Natural Products & Chemical Biology
- College of Che-mistry & Pharmacy
- Northwest A&F University
- Yangling 712100
- P. R. China
| | - Yuxin Pei
- Shaanxi Key Laboratory of Natural Products & Chemical Biology
- College of Che-mistry & Pharmacy
- Northwest A&F University
- Yangling 712100
- P. R. China
| | - Zhichao Pei
- Shaanxi Key Laboratory of Natural Products & Chemical Biology
- College of Che-mistry & Pharmacy
- Northwest A&F University
- Yangling 712100
- P. R. China
| |
Collapse
|