1
|
Shcherbinin VA, Nasibullina ER, Mendogralo EY, Uchuskin MG. Natural epoxyquinoids: isolation, biological activity and synthesis. An update. Org Biomol Chem 2023; 21:8215-8243. [PMID: 37812083 DOI: 10.1039/d3ob01141k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
Epoxyquinoids are of continuing interest due to their wide natural distribution and diverse biological activities, including, but not limited to, antibacterial, antifungal, anticancer, enzyme inhibitory, and others. The last review on their total synthesis was published in 2017. Since then, almost 100 articles have been published on their isolation from nature and their biological profile. In addition, the review specifically considers synthesis, including total and enantioselective, as well as the development of shorter approaches for the construction of epoxyquinoids with complex chemical architecture. Thus, this review focuses on progress in this area in order to stimulate further research.
Collapse
Affiliation(s)
- Vitaly A Shcherbinin
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Pr. 47, 119334 Moscow, Russian Federation
| | - Ekaterina R Nasibullina
- Department of Chemistry, Perm State University, Bukireva St. 15, 614990 Perm, Russian Federation.
| | - Elena Y Mendogralo
- Department of Chemistry, Perm State University, Bukireva St. 15, 614990 Perm, Russian Federation.
| | - Maxim G Uchuskin
- Department of Chemistry, Perm State University, Bukireva St. 15, 614990 Perm, Russian Federation.
| |
Collapse
|
2
|
Kotha S, Fatma A. Synthetic Approach to Oxacycles via the Application of Ring‐Rearrangement Metathesis. ChemistrySelect 2021. [DOI: 10.1002/slct.202102096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Sambasivarao Kotha
- Department of Chemistry Indian Institute of Technology-Bombay Powai Mumbai 400076 India
| | - Ambareen Fatma
- Department of Chemistry Indian Institute of Technology-Bombay Powai Mumbai 400076 India
| |
Collapse
|
3
|
Zhao H, Zou J, Xu W, Hu D, Guo LD, Chen JX, Chen GD, So KF, Yao XS, Gao H. Diisoprenyl-cyclohexene/ane-Type Meroterpenoids from Biscogniauxia sp. and Their Anti-inflammatory Activities. J Org Chem 2021; 86:11177-11188. [PMID: 34043349 DOI: 10.1021/acs.joc.1c00369] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A secondary metabolites investigation on Biscogniauxia sp. 71-10-1-1 was carried out, which led to the obtention of nine new diisoprenyl-cyclohexene/ane-type meroterpenoids (1-9) and two new isoprenylbenzoic acid-type meroterpeniods (10-11). The structures of these isolates were established on the basis of multispectroscopic analyses, ECD, and 13C chemical shifts calculations, and single-crystal X-ray diffraction. Among them, biscognin A (1) is the first diisoprenyl-cyclohexene-type meroterpenoid with a unique 2-isopropyl-6'-methyloctahydro-1'H-spiro[cyclopropane-1,2'-naphthalene] skeleton. Biscognienyne F (5) is the first diisoprenyl-cyclohexene-type meroterpenoid with a cyclic carbonate. The anti-inflammatory assays of the majority of compounds were evaluated, which exhibited that compounds 3 and 5 can obviously inhibit pro-inflammatory cytokines TNF-α and IL-6 productions. This is the first report for diisoprenyl-cyclohexene-type meroterpenoids with anti-inflammatory activity. Moreover, the possible biogenetic pathways of the majority of compounds (1-5) are proposed.
Collapse
Affiliation(s)
- Huan Zhao
- College of Traditional Chinese Medicine, Jinan University, Guangzhou 510632, People's Republic of China
| | - Jian Zou
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy/Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Jinan University, Guangzhou 510632, People's Republic of China.,Integrated Chinese and Western Medicine Postdoctoral Research Station, Jinan University, Guangzhou 510632, People's Republic of China
| | - Wei Xu
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy/Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Jinan University, Guangzhou 510632, People's Republic of China
| | - Dan Hu
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy/Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Jinan University, Guangzhou 510632, People's Republic of China
| | - Liang-Dong Guo
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
| | - Jia-Xu Chen
- College of Traditional Chinese Medicine, Jinan University, Guangzhou 510632, People's Republic of China
| | - Guo-Dong Chen
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy/Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Jinan University, Guangzhou 510632, People's Republic of China
| | - Kwok-Fai So
- Guangdong Medical Key Laboratory of Brain Function and Diseases/Guangdong-Hongkong-Macau Institute of Central Nervous System Regeneration, Guangzhou 510632, People's Republic of China
| | - Xin-Sheng Yao
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy/Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Jinan University, Guangzhou 510632, People's Republic of China
| | - Hao Gao
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy/Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Jinan University, Guangzhou 510632, People's Republic of China
| |
Collapse
|
4
|
Lamb CJC, Vilela F, Lee AL. Pd(II)-Catalyzed Enantioselective Desymmetrization of Polycyclic Cyclohexenediones: Conjugate Addition versus Oxidative Heck. Org Lett 2019; 21:8689-8694. [PMID: 31613102 DOI: 10.1021/acs.orglett.9b03293] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Pd(II)-catalyzed desymmetrization of polycyclic cyclohexenediones has been achieved with high enantio- and diastereoselectivities. Up to five contiguous stereocenters are desymmetrized, while simultaneously, an additional stereocenter is created by the enantioselective conjugate addition. Surprisingly, the conjugate addition products dominate even under typical oxidative Heck conditions, and these observations may provide some insight into the competition between the two related reactions.
Collapse
Affiliation(s)
- Claire J C Lamb
- Institute of Chemical Sciences , Heriot-Watt University , Edinburgh EH14 4AS , Scotland , U.K
| | - Filipe Vilela
- Institute of Chemical Sciences , Heriot-Watt University , Edinburgh EH14 4AS , Scotland , U.K
| | - Ai-Lan Lee
- Institute of Chemical Sciences , Heriot-Watt University , Edinburgh EH14 4AS , Scotland , U.K
| |
Collapse
|