1
|
Acharya SS, Parida BB. Synthetic routes to access dicarbonylated aryls and heteroaryls. Org Biomol Chem 2024; 22:8209-8248. [PMID: 39319402 DOI: 10.1039/d4ob01278j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/26/2024]
Abstract
1,2-Dicarbonyl compounds are privileged functionalities found in natural products, pharmaceuticals, bioactive molecules, and food items, and are important precursors in catalysis, asymmetric synthesis, polymer chemistry and synthesizing functionalized heterocycles. Herein, this comprehensive review focuses on various approaches for synthesizing 1,2-dicarbonylated aryls and heteroaryls in both intermolecular and intramolecular fashion, covering the dicarbonylation of indoles, imidazoheterocycles, indolizines, aminopyrazoles, pyrroloisoquinolines, coumarins, furan, anilines, phenols, anthranils, and benzil synthesis over the last decade (since 2015). Also, the present review highlights the scope and future perspectives of the approach.
Collapse
Affiliation(s)
- Swadhin Swaraj Acharya
- Organic Synthesis Laboratory, P. G. Department of Chemistry, Berhampur University, Bhanja Bihar, Odisha, India 760007.
| | - Bibhuti Bhusan Parida
- Organic Synthesis Laboratory, P. G. Department of Chemistry, Berhampur University, Bhanja Bihar, Odisha, India 760007.
| |
Collapse
|
2
|
Perumal K, Palanisamy N, Hemamalini V, Shankar B, Shanthi M, Ramesh S. Unveiling Na 2-Eosin Y-Catalyzed and Water-Assisted Visible-Light Activation of Oxygen Molecules for the Dicarbonylation of Pyrazole Amines. J Org Chem 2024; 89:13556-13574. [PMID: 39255784 DOI: 10.1021/acs.joc.4c01741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
A novel approach employing visible light-mediated activation of triplet oxygen molecules has been established. The reaction occurs at room temperature between pyrazole amine and phenylglyoxal monohydrate in the presence of Na2-eosin Y. Water played the dual role of solvent and reagent/additive. Photoactivation of triplet oxygen species was used to demonstrate the initiation of the hydrogen atom transfer (HAT) process. The conversion of the reaction mixture was found to be dependent on the amount of water present. Control experiments confirmed the importance of light, the photocatalyst, oxygen, the base, and water. The process tolerated various substitutions in both pyrazole amine and phenylglyoxal derivatives, enabling the synthesis of various dicarbonylpyrazole amines 15 and pyrazolooxazine derivatives 16 in moderate to good yields. 2 equiv of phenylglyoxal 10 gave a different reaction pathway, yielding highly diastereoselective pyrazolooxazine derivatives, confirmed by X-ray diffraction analysis. Collectively, this sustainable and environmentally friendly synthetic technique offers a promising method for the efficient preparation of pyrazole-based heterocyclic compounds. The high regioselectivity observed during the formation of trans-tetrahydropyrazolo[3,4-d][1,3]oxazine has been clarified through computational methods. These investigations emphasize the underlying factors and mechanisms that encourage the formation of this specific product, providing valuable insights into the reaction's selectivity and efficiency.
Collapse
Affiliation(s)
- Karuppaiah Perumal
- Department of Chemistry, School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur, Tamil Nadu 613 401, India
| | - Nivedhitha Palanisamy
- Department of Chemistry, School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur, Tamil Nadu 613 401, India
| | - Vijayakumar Hemamalini
- Department of Chemistry, School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur, Tamil Nadu 613 401, India
| | - Bhaskaran Shankar
- Department of Chemistry, Thiagarajar College of Engineering, Madurai, Tamil Nadu 625 015, India
| | - Markabandhu Shanthi
- Department of Chemistry, School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur, Tamil Nadu 613 401, India
| | - Subburethinam Ramesh
- Department of Chemistry, School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur, Tamil Nadu 613 401, India
| |
Collapse
|
3
|
Rastogi GK, Deb ML, Baruah PK. Copper-catalysed dehydrogenative self-coupling/cyclization of 5-aminopyrazoles: synthesis and photophysical study of pyridazines. Chem Commun (Camb) 2023. [PMID: 37465848 DOI: 10.1039/d3cc02424e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2023]
Abstract
An interesting self-coupling/cyclization of 5-aminopyrazoles is revealed, which provides a variety of pyridazine cores in reasonable yields. In this reaction, C(sp2)-C(sp2) and N-N bond formation occurs simultaneously in one reaction vessel. The photophysical properties of the synthesized compounds were also studied and some of them exhibited fluorescence properties with good quantum yields. A radical mediated reaction mechanism is proposed with the help of control experiments.
Collapse
Affiliation(s)
- Gaurav K Rastogi
- Department of Applied Sciences, GUIST, Gauhati University, Guwahati-781014, Assam, India.
- Department of Applied Organic Chemistry, CSIR-NEIST, Jorhat 785006, Assam, India
| | - Mohit L Deb
- Department of Applied Sciences, GUIST, Gauhati University, Guwahati-781014, Assam, India.
- Advanced Research Centre and Department of Chemistry, University of Science and Technology Meghalaya, Ri-Bhoi, Meghalaya-793101, India
| | - Pranjal K Baruah
- Department of Applied Sciences, GUIST, Gauhati University, Guwahati-781014, Assam, India.
| |
Collapse
|
4
|
Huo LQ, Shi LL, Fu J. Iron‐Copper Dual‐Catalysis Boosted C‐Based Bond‐Forming Reactions. European J Org Chem 2022. [DOI: 10.1002/ejoc.202200454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Lu-Qiong Huo
- The Chinese University of Hong Kong - Shenzhen School of Science and Engineering Longgang District 518055 Shenzhen CHINA
| | - Li-Li Shi
- Peking University Shenzhen Graduate School State Key Laboratory of Chemical Oncogenomics and Key Laboratory of Chemical Genomics Shenzhen University TownLishui RoadXili TownNanshan District 518055 Shenzhen CHINA
| | - Junkai Fu
- Northeast Normal University Department of Chemistry Renmin Street, 5268Nanguan district 130024 Changchun CHINA
| |
Collapse
|
5
|
Tang X, Chen J, Tian J, Wen K, Gao Q, Shi J, Yao X, Wu T. A new method for C(sp2)-H sulfonylmethylation with glyoxylic acid and sodium sulfinates. Org Biomol Chem 2022; 20:1652-1655. [DOI: 10.1039/d2ob00029f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We herein describe a C4 sulfonylmethylation of pyrazol-5-amines with glyoxylic acid and sodium sulfinates. The reaction only needed to add water as the solvent, and it featured mild reaction condition,...
Collapse
|
6
|
Annes SB, Saritha R, Chandru K, Mandali PK, Ramesh S. Metal- and Solvent-Free Cascade Reaction for the Synthesis of Amino Pyrazole Thioether Derivatives. J Org Chem 2021; 86:16473-16484. [PMID: 34747592 DOI: 10.1021/acs.joc.1c01846] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
We developed an iodine-mediated cascade strategy to synthesize amino pyrazole thioether derivatives (11) in the absence of metals as well as solvents. The present approach provides amino pyrazole thioethers in a highly selective manner without the formation of diaryl sulfide and sulfenyl-enaminonitrile with broad substrate scope. The reactivity of nine sulfenylation sources and synthetic applications of the synthesized compounds have been demonstrated. Thus, the overall iodine-mediated multicomponent reaction (MCR) is more economically feasible, efficient, and environmentally benign.
Collapse
Affiliation(s)
- Sesuraj Babiola Annes
- Department of Chemistry, School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur 613401, Tamil Nadu, India
| | - Rajendhiran Saritha
- Department of Chemistry, School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur 613401, Tamil Nadu, India
| | - Kuppusamy Chandru
- Department of Chemistry, School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur 613401, Tamil Nadu, India
| | - Pavan Kumar Mandali
- Department of Chemistry, School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur 613401, Tamil Nadu, India
| | - Subburethinam Ramesh
- Department of Chemistry, School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur 613401, Tamil Nadu, India
| |
Collapse
|
7
|
Deka B, Rastogi GK, Deb ML, Baruah PK. Ten Years of Glory in the α-Functionalizations of Acetophenones: Progress Through Kornblum Oxidation and C-H Functionalization. Top Curr Chem (Cham) 2021; 380:1. [PMID: 34746982 DOI: 10.1007/s41061-021-00356-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 10/21/2021] [Indexed: 11/29/2022]
Abstract
This review article focuses on the α-functionalization of acetophenones involving Kornblum oxidation and C-H functionalizations. Although various other strategies, such as classical approaches, enamine approaches and umpolung strategy are also known for this functionalization, here we discuss mainly the Kornblum oxidation approach and C-H functionalization strategy as they have advantages over the others. In Kornblum oxidation, the reaction uses iodine and dimethylsulfoxide and proceeds through the formation of arylglyoxal as the key intermediate. In C-H functionalization, the reaction requires metal, or metal-free catalyst, and generates radical intermediate in most cases. α-Functionalization of acetophenones is very important because of their huge applications in the synthesis of various natural products and pharmaceuticals and, therefore, a number of research articles have been published in this area. However, no review articles are available so far. In this article, we present a succinct discussion of various important and novel reactions, along with their mechanisms, published since 2012 to date. We believe that this first review article in this field will give readers one-stop information on this topic and encourage further intriguing work in this area.
Collapse
Affiliation(s)
- Bhaskar Deka
- Department of Applied Sciences, GUIST, Gauhati University, Guwahati, Assam, 781014, India
| | - Gaurav K Rastogi
- Department of Applied Sciences, GUIST, Gauhati University, Guwahati, Assam, 781014, India
| | - Mohit L Deb
- Department of Applied Sciences, GUIST, Gauhati University, Guwahati, Assam, 781014, India
| | - Pranjal K Baruah
- Department of Applied Sciences, GUIST, Gauhati University, Guwahati, Assam, 781014, India.
| |
Collapse
|
8
|
Rahman I, Deka B, Thakuria R, Deb ML, Baruah PK. L-Proline-catalyzed regioselective C1 arylation of tetrahydroisoquinolines through a multicomponent reaction under solvent-free conditions. Org Biomol Chem 2020; 18:6514-6518. [PMID: 32804185 DOI: 10.1039/d0ob01363c] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Here we disclose the C1 arylation of tetrahydroisoquinolines (THIQ) through regioselective C(sp3)-H functionalization using a multicomponent reaction. The reaction was performed by reacting THIQ, aldehydes and aminopyrazoles or indoles under neat conditions with l-proline as a catalyst. The regioselectivity of the products was confirmed by X-ray analysis and spectroscopic data. The formation of an azomethine ylide intermediate is crucial for obtaining the regioselectivity.
Collapse
Affiliation(s)
- Iftakur Rahman
- Department of Applied Sciences, GUIST, Gauhati University, Guwahati-781014, Assam, India.
| | - Bhaskar Deka
- Department of Applied Sciences, GUIST, Gauhati University, Guwahati-781014, Assam, India.
| | - Ranjit Thakuria
- Department of Chemistry, Gauhati University, Guwahati-781014, Assam, India
| | - Mohit L Deb
- Department of Applied Sciences, GUIST, Gauhati University, Guwahati-781014, Assam, India.
| | - Pranjal K Baruah
- Department of Applied Sciences, GUIST, Gauhati University, Guwahati-781014, Assam, India.
| |
Collapse
|
9
|
Rastogi GK, Deka B, Deb ML, Baruah PK. Diastereoselective sp3-C-H Functionalization of Arylmethyl Ketones and Transformation of E
- to Z
-Products Through Photocatalysis. European J Org Chem 2019. [DOI: 10.1002/ejoc.201901415] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Gaurav K. Rastogi
- Department of Applied Sciences, GUIST; Gauhati University; -781014 Guwahati Assam India
- Department of Applied Organic Chemistry; CSIR-NEIST; -785006 Jorhat Assam India
| | - Bhaskar Deka
- Department of Applied Sciences, GUIST; Gauhati University; -781014 Guwahati Assam India
| | - Mohit L. Deb
- Department of Applied Sciences, GUIST; Gauhati University; -781014 Guwahati Assam India
| | - Pranjal K. Baruah
- Department of Applied Sciences, GUIST; Gauhati University; -781014 Guwahati Assam India
| |
Collapse
|