1
|
Presnukhina SI, Baykova SO, Chukanova EA, Metalnikova NM, Baykov SV, Soldatova NS, Postnikov PS, Boyarskiy VP. Copper-catalyzed N-arylation of 1,2,4-oxadiazin-5(6 H)-ones by diaryliodonium salts. Org Biomol Chem 2025; 23:4217-4225. [PMID: 40190216 DOI: 10.1039/d5ob00204d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/01/2025]
Abstract
Herein, we developed a new synthetic approach for the preparation of N-arylated 1,2,4-oxadiazin-5(6H)-ones by direct arylation with diaryliodonium salts. The reaction with symmetrical diaryliodonium salts using CuI as a catalyst proceeded in toluene in the presence of DIPEA at 60 °C with the formation of the desired products in isolated yields of 46 to 97% (20 examples). The use of more readily available unsymmetrical diaryliodonium salts required higher reaction temperatures (up to 100 °C) to achieve similar yields. The only limitation observed in reaction was with an ortho-substituted iodonium salt. In all other cases, the developed approach allowed the preparation of a broad range of N-arylated 1,2,4-oxadiazin-5(6H)-ones under mild conditions utilizing a cheap and readily available catalyst.
Collapse
Affiliation(s)
- Sofia I Presnukhina
- Institute of Chemistry, Saint Petersburg State University, 199034 Saint Petersburg, Russian Federation.
| | - Svetlana O Baykova
- Institute of Chemistry, Saint Petersburg State University, 199034 Saint Petersburg, Russian Federation.
| | - Elizaveta A Chukanova
- Institute of Chemistry, Saint Petersburg State University, 199034 Saint Petersburg, Russian Federation.
| | - Nadezhda M Metalnikova
- Research School of Chemistry and Applied Biomedical Sciences, Tomsk Polytechnic University, 634050 Tomsk, Russian Federation
| | - Sergey V Baykov
- Institute of Chemistry, Saint Petersburg State University, 199034 Saint Petersburg, Russian Federation.
| | - Natalia S Soldatova
- Research School of Chemistry and Applied Biomedical Sciences, Tomsk Polytechnic University, 634050 Tomsk, Russian Federation
| | - Pavel S Postnikov
- Research School of Chemistry and Applied Biomedical Sciences, Tomsk Polytechnic University, 634050 Tomsk, Russian Federation
| | - Vadim P Boyarskiy
- Institute of Chemistry, Saint Petersburg State University, 199034 Saint Petersburg, Russian Federation.
| |
Collapse
|
2
|
Kikushima K, Komiyama K, Umekawa N, Yamada K, Kita Y, Dohi T. Silver-Catalyzed Coupling of Unreactive Carboxylates: Synthesis of α-Fluorinated O-Aryl Esters. Org Lett 2024; 26:5347-5352. [PMID: 38885467 DOI: 10.1021/acs.orglett.4c01731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
α-Fluorinated aryl esters pose a challenge in synthesis via O-arylation of α-fluorinated carboxylates owing to their low reactivities. This limitation has been addressed by combining a silver catalyst with aryl(trimethoxyphenyl)iodonium tosylates to access α-fluorinated aryl esters. We envision that the catalytic system involves high-valent aryl silver species generated via the oxidation of silver(I) salt. The present method provided a synthetic protocol for various α-fluorinated aryl esters including fluorinated analogs of drug derivatives.
Collapse
Affiliation(s)
- Kotaro Kikushima
- College of Pharmaceutical Sciences, Ritsumeikan University, Kusatsu 525-8577, Shiga, Japan
| | - Keina Komiyama
- College of Pharmaceutical Sciences, Ritsumeikan University, Kusatsu 525-8577, Shiga, Japan
| | - Narumi Umekawa
- College of Pharmaceutical Sciences, Ritsumeikan University, Kusatsu 525-8577, Shiga, Japan
| | - Kohei Yamada
- College of Pharmaceutical Sciences, Ritsumeikan University, Kusatsu 525-8577, Shiga, Japan
| | - Yasuyuki Kita
- Research Organization of Science and Technology, Ritsumeikan University, Kusatsu 525-8577, Shiga, Japan
| | - Toshifumi Dohi
- College of Pharmaceutical Sciences, Ritsumeikan University, Kusatsu 525-8577, Shiga, Japan
- Research Organization of Science and Technology, Ritsumeikan University, Kusatsu 525-8577, Shiga, Japan
| |
Collapse
|
3
|
Saikia RA, Talukdar K, Pathak D, Sarma B, Thakur AJ. Utilization of Aryl(TMP)iodonium Salts for Copper-Catalyzed N-Arylation of Isatoic Anhydrides: An Avenue to Fenamic Acid Derivatives and N,N'-Diarylindazol-3-ones. J Org Chem 2023; 88:3567-3581. [PMID: 36827541 DOI: 10.1021/acs.joc.2c02762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/26/2023]
Abstract
Herein, we report a general method for copper-catalyzed N-arylation of isatoic anhydrides with unsymmetrical iodonium salts at room temperature. The developed catalytic protocol is mild and operationally simple, and aryl(TMP)iodonium trifluoroacetate is employed as the arylating partner. The methodology offers the broad applicability of both structurally and electronically diverse aryl groups from aryl(TMP)iodonium salts to access N-arylated isatoic anhydrides in moderate to excellent yields (53-92%). Moreover, the substituted isatoic anhydrides are equally compatible with the protocol too. To demonstrate the synthetic utilities of the N-arylation process, we also report an alternative approach for biologically relevant fenamic acid derivatives and N,N'-diarylindazol-3-ones in a one-pot step economical system. In addition, the scale-up synthesis of flufenamic acid is also illustrated.
Collapse
Affiliation(s)
- Raktim Abha Saikia
- Department of Chemical Sciences, Tezpur University, Napaam 784028, India
| | - Khanindra Talukdar
- Department of Chemical Sciences, Tezpur University, Napaam 784028, India
| | - Debabrat Pathak
- Department of Chemical Sciences, Tezpur University, Napaam 784028, India
| | - Bipul Sarma
- Department of Chemical Sciences, Tezpur University, Napaam 784028, India
| | - Ashim Jyoti Thakur
- Department of Chemical Sciences, Tezpur University, Napaam 784028, India
| |
Collapse
|
4
|
Podrezova EV, Okhina AA, Rogachev AD, Baykov SV, Kirschning A, Yusubov MS, Soldatova NS, Postnikov PS. Ligand-free Ullmann-type arylation of oxazolidinones by diaryliodonium salts. Org Biomol Chem 2023; 21:1952-1957. [PMID: 36757159 DOI: 10.1039/d2ob02122f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The arylation of azaheterocycles can be considered as one of the most important processes for the preparation of various biologically active compounds. In the present work, we describe a method for the copper-catalyzed N-arylation of hindered oxazolidinones using diaryliodonium salts. The method succeeds in good to excellent yields for the arylation of 4-alkyloxazolidinones, including sterically hindered isopropyl- and tert-butyl-substituted. The efficiency of the method was demonstrated for a wide range of diaryliodonium salts - symmetric and unsymmetric as well as ortho-substituted derivatives. The developed approach will provide an important contribution in the development and preparation of novel drugs and bioactive molecules containing oxazolidinone moieties.
Collapse
Affiliation(s)
- Ekaterina V Podrezova
- Research School of Chemistry and Applied Biomedical Sciences, Tomsk Polytechnic University, Tomsk 634034, Russia.
| | - Alina A Okhina
- N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, acad. Lavrentiev ave., 9, Novosibirsk 630090, Russia.,Novosibirsk State University, Pirogov str., 2, Novosibirsk 630090, Russia
| | - Artem D Rogachev
- N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, acad. Lavrentiev ave., 9, Novosibirsk 630090, Russia.,Novosibirsk State University, Pirogov str., 2, Novosibirsk 630090, Russia
| | - Sergey V Baykov
- Research School of Chemistry and Applied Biomedical Sciences, Tomsk Polytechnic University, Tomsk 634034, Russia. .,Institute of Chemistry, Saint Petersburg State University, Saint Petersburg 199034, Russia
| | | | - Mekhman S Yusubov
- Research School of Chemistry and Applied Biomedical Sciences, Tomsk Polytechnic University, Tomsk 634034, Russia.
| | - Natalia S Soldatova
- Research School of Chemistry and Applied Biomedical Sciences, Tomsk Polytechnic University, Tomsk 634034, Russia.
| | - Pavel S Postnikov
- Research School of Chemistry and Applied Biomedical Sciences, Tomsk Polytechnic University, Tomsk 634034, Russia. .,Department of Solid State Engineering, Institute of Chemical Technology, Prague 16628, Czech Republic
| |
Collapse
|
5
|
Sihag M, Soni R, Rani N, Kinger M, Kumar Aneja D. Recent Synthetic Applications of Hypervalent Iodine Reagents. A Review in Three Installments: Installment II. ORG PREP PROCED INT 2022. [DOI: 10.1080/00304948.2022.2114236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2022]
Affiliation(s)
- Monika Sihag
- Department of Chemistry, Chaudhary Bansi Lal University, Bhiwani, Haryana, India
| | - Rinku Soni
- Department of Chemistry, Chaudhary Bansi Lal University, Bhiwani, Haryana, India
| | - Neha Rani
- Department of Chemistry, Chaudhary Bansi Lal University, Bhiwani, Haryana, India
| | - Mayank Kinger
- Department of Chemistry, Chaudhary Bansi Lal University, Bhiwani, Haryana, India
| | - Deepak Kumar Aneja
- Department of Chemistry, Chaudhary Bansi Lal University, Bhiwani, Haryana, India
| |
Collapse
|
6
|
13C-NMR Chemical Shifts in 1,3-Benzazoles as a Tautomeric Ratio Criterion. Molecules 2022; 27:molecules27196268. [PMID: 36234805 PMCID: PMC9570581 DOI: 10.3390/molecules27196268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 09/14/2022] [Accepted: 09/18/2022] [Indexed: 11/17/2022] Open
Abstract
Benzimidazole is an important heterocyclic fragment, present in many biologically active compounds with a great variety of therapeutic purposes. Most of the benzimidazole activities are explained through the existence of 1,3-tautomeric equilibrium. As the binding affinity of each tautomer to a protein target depends on an established bioactive conformation, the effect of tautomers on the ligand protein binding mechanism is determinant. In this work, we searched and analyzed a series of reported 13C-NMR spectra of benzazoles and benzazolidine-2-thiones with the purpose of estimating their tautomeric equilibrium. Herein, several approaches to determine this problem are presented, which makes it a good initial introduction to the non-expert reader. This chemical shift difference and C4/C7 signals of benzimidazolidine-2-thione and 1-methyl-2-thiomethylbenzimidazole as references were used in this work to quantitatively calculate, in solution, the pyrrole–pyridine tautomeric ratio in equilibrium. The analysis will help researchers to correctly assign the chemical shifts of benzimidazoles and to calculate their intracyclic or exocyclic tautomeric ratio as well as mesomeric proportion in benzimidazoles.
Collapse
|
7
|
An Unexpected Reaction between Diaryliodonium Salts and DMSO. ORGANICS 2022. [DOI: 10.3390/org3030020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Diaryliodonium salts are useful arylating reagents that have been exploited widely. In this Communication, we demonstrate that heating diphenyliodonium triflate in the solvent DMSO leads to an unexpected arylation reaction. It is postulated that arylation of DMSO at oxygen, followed by a thia-Sommelet–Hauser rearrangement, leads to the formation of 2-thiomethylphenols. More substituted diaryliodonium salts and cyclic diaryliodonium salts are shown to be more stable and less likely to react with DMSO. In conclusion, when using iodonium salts dissolved in DMSO, beware of side-reactions.
Collapse
|
8
|
Kikushima K, Miyamoto N, Watanabe K, Koseki D, Kita Y, Dohi T. Ligand- and Counterion-Assisted Phenol O-Arylation with TMP-Iodonium(III) Acetates. Org Lett 2022; 24:1924-1928. [DOI: 10.1021/acs.orglett.2c00294] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Kotaro Kikushima
- College of Pharmaceutical Sciences, Ritsumeikan University, 1-1-1, Nojihigashi, Kusatsu Shiga 525-8577, Japan
| | - Naoki Miyamoto
- College of Pharmaceutical Sciences, Ritsumeikan University, 1-1-1, Nojihigashi, Kusatsu Shiga 525-8577, Japan
| | - Kazuma Watanabe
- College of Pharmaceutical Sciences, Ritsumeikan University, 1-1-1, Nojihigashi, Kusatsu Shiga 525-8577, Japan
| | - Daichi Koseki
- College of Pharmaceutical Sciences, Ritsumeikan University, 1-1-1, Nojihigashi, Kusatsu Shiga 525-8577, Japan
| | - Yasuyuki Kita
- Research Organization of Science and Technology, Ritsumeikan University, 1-1-1, Nojihigashi, Kusatsu Shiga 525-8577, Japan
| | - Toshifumi Dohi
- College of Pharmaceutical Sciences, Ritsumeikan University, 1-1-1, Nojihigashi, Kusatsu Shiga 525-8577, Japan
- Research Organization of Science and Technology, Ritsumeikan University, 1-1-1, Nojihigashi, Kusatsu Shiga 525-8577, Japan
| |
Collapse
|
9
|
Kikushima K, Elboray EE, Jimenez-Halla JOC, Solorio-Alvarado CR, Dohi T. Diaryliodonium(III) Salts in One-Pot Double Functionalization of C–IIII and ortho C–H Bonds. Org Biomol Chem 2022; 20:3231-3248. [DOI: 10.1039/d1ob02501e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Since the 1950s, diaryliodonium(III) salts have been demonstrated to participate in various arylation reactions, forming aryl–heteroatom and aryl–carbon bonds. Incorporating the arylation step into sequential transformations would provide access to...
Collapse
|
10
|
Shibata K, Takao KI, Ogura A. Diaryliodonium Salt-Based Synthesis of N-Alkoxyindolines and Further Insights into the Ishikawa Indole Synthesis. J Org Chem 2021; 86:10067-10087. [PMID: 34197104 DOI: 10.1021/acs.joc.1c00820] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A diaryliodonium salt-based strategy enabled the first systematic synthesis of rarely accessible N-alkoxyindolines. Mechanistic analyses suggested that the reaction likely involves reductive elimination of iodobenzene from iodaoxazepine via a four-membered transition state, followed by Meisenheimer rearrangement. Substrates with N-carbamate protection afforded indole in a manner similar to that of the Ishikawa indole synthesis. Preinstallation of a stannyl group as an iodonium salt precursor greatly expanded the substrate scope, and further mechanistic insights are discussed.
Collapse
Affiliation(s)
- Kouhei Shibata
- Department of Applied Chemistry, Keio University, Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan
| | - Ken-Ichi Takao
- Department of Applied Chemistry, Keio University, Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan
| | - Akihiro Ogura
- Department of Applied Chemistry, Keio University, Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan
| |
Collapse
|
11
|
Soldatova NS, Semenov AV, Geyl KK, Baykov SV, Shetnev AA, Konstantinova AS, Korsakov MM, Yusubov MS, Postnikov PS. Copper‐Catalyzed Selective N‐Arylation of Oxadiazolones by Diaryliodonium Salts. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202100426] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Natalia S. Soldatova
- Institute of Chemistry Saint Petersburg State University Saint Petersburg 199034 Russian Federation
- Research School of Chemistry and Applied Biomedical Sciences Tomsk Polytechnic University Tomsk 634034 Russian Federation
| | - Artem V. Semenov
- M.V. Lomonosov Institute of Fine Chemical Technologies MIREA – Russian Technological University 86 Vernadskogo Pr Moscow 119571 Russian Federation
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry 16/10 Miklukho-Maklaya St. Moscow 117997 Russian Federation
| | - Kirill K. Geyl
- Institute of Chemistry Saint Petersburg State University Saint Petersburg 199034 Russian Federation
| | - Sergey V. Baykov
- Institute of Chemistry Saint Petersburg State University Saint Petersburg 199034 Russian Federation
| | - Anton A. Shetnev
- Pharmaceutical Technology Transfer Centre Yaroslavl State Pedagogical University named after K.D. Ushinsky 108 Respublikanskaya St. Yaroslavl 150000 Russian Federation
| | - Anna S. Konstantinova
- Russian State University named after A.N. Kosygin (Technology. Design. Art) 33 Sadovnicheskaya St. Moscow 117997 Russian Federation
| | - Mikhail M. Korsakov
- Russian State University named after A.N. Kosygin (Technology. Design. Art) 33 Sadovnicheskaya St. Moscow 117997 Russian Federation
| | - Mekhman S. Yusubov
- Research School of Chemistry and Applied Biomedical Sciences Tomsk Polytechnic University Tomsk 634034 Russian Federation
| | - Pavel S. Postnikov
- Research School of Chemistry and Applied Biomedical Sciences Tomsk Polytechnic University Tomsk 634034 Russian Federation
- Department of Solid State Engineering Institute of Chemical Technology Prague 16628 Czech Republic
| |
Collapse
|
12
|
Halder P, Roy T, Das P. Recent developments in selective N-arylation of azoles. Chem Commun (Camb) 2021; 57:5235-5249. [PMID: 33908975 DOI: 10.1039/d1cc01265g] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Transition-metal based carbon-heteroatom (C-X) bond formation has attracted the attention of synthetic chemists over the past few years because the resultant aryl/heteroaryl motifs are important substructures in many natural products, pharmaceuticals, etc. Several efficient protocols such as Buchwald-Hartwig amination, Ullmann coupling, Chan-Lam coupling and metal-free approaches have proved beneficial in C-X bond formation. Selective arylation of one hetero-centre over other centres without protection/deprotection thus allowing minimum synthetic manipulation has been achieved for several substrates using these protocols. Azoles are one such novel five-membered heterocyclic core with huge pharmaceutical applications. Though N-arylation on azole-bearing analogues has been extensively practised, selective N-arylation either on one N-centre or the exocyclic N-site of the azole ring in competition with other hetero-centres in the framework has been recently explored for azole-carrying systems. Thus, this review would focus on recent advances in chemo- and regio-selective N-arylation (either on one N-centre or the exocyclic N-site of the azole ring) on azole-containing frameworks.
Collapse
Affiliation(s)
- Pallabi Halder
- Department of Chemistry, Indian Institute of Technology (Indian School of Mines) Dhanbad, Dhanbad-826004, India.
| | - Tanumay Roy
- Department of Chemistry, Indian Institute of Technology (Indian School of Mines) Dhanbad, Dhanbad-826004, India.
| | - Parthasarathi Das
- Department of Chemistry, Indian Institute of Technology (Indian School of Mines) Dhanbad, Dhanbad-826004, India.
| |
Collapse
|
13
|
Nilova A, Metze B, Stuart DR. Aryl(TMP)iodonium Tosylate Reagents as a Strategic Entry Point to Diverse Aryl Intermediates: Selective Access to Arynes. Org Lett 2021; 23:4813-4817. [PMID: 34032454 DOI: 10.1021/acs.orglett.1c01534] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Arenes are broadly found motifs in societally important molecules. Access to diverse arene chemical space is critically important, and the ability to do so from common reagents is highly desirable. Aryl(TMP)iodonium tosylates provide one such access point to arene chemical space via diverse aryl intermediates. Here we demonstrate that controlling reaction pathways selectively leads to arynes with a broad scope of arenes and arynophiles (24 examples, 70% average yield) and efficient access to biologically active compounds.
Collapse
Affiliation(s)
- Aleksandra Nilova
- Department of Chemistry, Portland State University, Portland, Oregon 97201, United States
| | - Bryan Metze
- Department of Chemistry, Portland State University, Portland, Oregon 97201, United States
| | - David R Stuart
- Department of Chemistry, Portland State University, Portland, Oregon 97201, United States
| |
Collapse
|
14
|
Chen PY, Hsu CW, Ho TI, Ho JH. The selective synthesis of N-arylbenzene-1,2-diamines or 1-arylbenzimidazoles by irradiating 4-methoxy-4'-substituted-azobenzenes in different solvents. RSC Adv 2021; 11:6662-6666. [PMID: 35423196 PMCID: PMC8694891 DOI: 10.1039/d0ra10068d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Accepted: 01/21/2021] [Indexed: 11/21/2022] Open
Abstract
The solvent-controllable photoreaction of 4-methoxyazobenzenes to afford 1-aryl-1H-benzimidazoles or N-arylbenzene-1,2-diamines has been studied. The irradiation of 4-methoxyazobenzenes in DMF containing 0.5 M hydrochloric acid provided N2-aryl-4-methoxybenzene-1,2-diamines as the major product, while irradiation in acetal containing 0.16 M hydrochloric acid led to 1-aryl-6-methoxy-2-methyl-1H-benzimidazoles as the major product. A possible reaction mechanism explaining the selectivity was also discussed. A solvent-controllable photoreaction involving 4-methoxyazobenzenes has been developed to synthesize 1-aryl-1H-benzimidazoles or N-arylbenzene-1,2-diamines in moderate to good yields.![]()
Collapse
Affiliation(s)
- Po-Yi Chen
- Department of Chemical Engineering, National Taiwan University of Science and Technology Taiwan
| | - Chi-Wei Hsu
- Department of Chemistry, National Taiwan University Taiwan .,EdBrother Biotechnology Ltd Taiwan
| | - Tong-Ing Ho
- Department of Chemistry, National Taiwan University Taiwan
| | - Jinn-Hsuan Ho
- Department of Chemical Engineering, National Taiwan University of Science and Technology Taiwan
| |
Collapse
|
15
|
Nerdinger S, P. Graczyk P. Lesinurad – There are More Ways than One of Synthesizing the Drug. HETEROCYCLES 2021. [DOI: 10.3987/rev-20-sr(k)4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
16
|
Abstract
Due to similar reactivity in comparison with aromatic organometallic reagents,
diaryliodonium salts are currently in broad usage as less toxic, highly efficient, stable and
mild electrophilic reagents in organic synthesis. The hypervalent iodine center of diaryliodonium
salts can lead to unique reactivity, which thus is frequently presented in metal-free
arylations or metal-involved elementary reactions such as oxidative addition, reduction
elimination, ligand coupling and ligand exchange reaction. As such, diaryliodonium salts
have experienced explosive growth by transferring aromatics to the target molecules. In
contrast to the reviews on the synthetic utility or aryl transformations by using diaryliodonium
salts, this review provides a summary of their structures and the synthetic strategies
towards them during recent decades.
Collapse
Affiliation(s)
- Yu Wang
- School of Chemistry and Molecular Engineering, East China University of Science & Technology, Shanghai, 200237, China
| | - Guoqiang An
- School of Chemistry and Molecular Engineering, East China University of Science & Technology, Shanghai, 200237, China
| | - Limin Wang
- School of Chemistry and Molecular Engineering, East China University of Science & Technology, Shanghai, 200237, China
| | - Jianwei Han
- School of Chemistry and Molecular Engineering, East China University of Science & Technology, Shanghai, 200237, China
| |
Collapse
|
17
|
Diaryliodoniums Salts as Coupling Partners for Transition-Metal Catalyzed C- and N-Arylation of Heteroarenes. Catalysts 2020. [DOI: 10.3390/catal10050483] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Owing to the pioneering works performed on the metal-catalyzed sp2 C–H arylation of indole and pyrrole by Sanford and Gaunt, N– and C-arylation involving diaryliodonium salts offers an attractive complementary strategy for the late-stage diversification of heteroarenes. The main feature of this expanding methodology is the selective incorporation of structural diversity into complex molecules which usually have several C–H bonds and/or N–H bonds with high tolerance to functional groups and under mild conditions. This review summarizes the main recent achievements reported in transition-metal-catalyzed N– and/or C–H arylation of heteroarenes using acyclic diaryliodonium salts as coupling partners.
Collapse
|
18
|
Chen JQ, Liu X, Guo J, Dong ZB. A Chemoselective and Desulfurative Chan-Lam Coupling: C-N Bond Formation between Benzimidazoline-2-Thiones and Arylboronic Acids. European J Org Chem 2020. [DOI: 10.1002/ejoc.202000075] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Jin-Quan Chen
- School of Chemistry and Environmental Engineering; Wuhan Institute of Technology; 430205 Wuhan China
| | - Xing Liu
- School of Chemistry and Environmental Engineering; Wuhan Institute of Technology; 430205 Wuhan China
| | - Jia Guo
- Key Laboratory of Green Chemical Process; Ministry of Education; Wuhan Institute of Technology; 430205 Wuhan China
- Hubei Key Laboratory of Novel Reactor and Green Chemistry Technology; Ministry of Education; Wuhan Institute of Technology; 430205 Wuhan China
| | - Zhi-Bing Dong
- School of Chemistry and Environmental Engineering; Wuhan Institute of Technology; 430205 Wuhan China
- Key Laboratory of Green Chemical Process; Ministry of Education; Wuhan Institute of Technology; 430205 Wuhan China
- Hubei Key Laboratory of Novel Reactor and Green Chemistry Technology; Ministry of Education; Wuhan Institute of Technology; 430205 Wuhan China
- Ministry-of-Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules; Ministry of Education; Hubei University; 430062 Wuhan China
| |
Collapse
|
19
|
Kumari S, Ratnam A, Mawai K, Chaudhary VK, Mohanty A, Ghosh K. Cu(i) based catalysts derived from bidentate ligands and studies on the effect of substituents for N-arylation of benzimidazoles and indoles. NEW J CHEM 2020. [DOI: 10.1039/d0nj02568b] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Four Cu(i) complexes [Cu(L1–4)(Cl)(PPh3)] (C1–C4) were synthesized, characterized and crystal structure of C1 was determined. Complexes were utilized as catalysts for N-arylation reaction. Probable mechanism for N-arylation reaction was proposed.
Collapse
Affiliation(s)
- Sheela Kumari
- Department of Chemistry
- Indian Institute of Technology Roorkee
- Roorkee 247667
- India
| | - Anand Ratnam
- Department of Chemistry
- DDU Gorakhpur University
- Gorakhpur
- India
| | - Kiran Mawai
- Department of Chemistry
- Indian Institute of Technology Roorkee
- Roorkee 247667
- India
| | | | - Aurobinda Mohanty
- Department of Chemistry
- Indian Institute of Technology Roorkee
- Roorkee 247667
- India
| | - Kaushik Ghosh
- Department of Chemistry
- Indian Institute of Technology Roorkee
- Roorkee 247667
- India
| |
Collapse
|
20
|
Taheri-Ledari R, Hashemi SM, Maleki A. High-performance sono/nano-catalytic system: CTSN/Fe 3O 4-Cu nanocomposite, a promising heterogeneous catalyst for the synthesis of N-arylimidazoles. RSC Adv 2019; 9:40348-40356. [PMID: 35542689 PMCID: PMC9076274 DOI: 10.1039/c9ra08062g] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Accepted: 11/29/2019] [Indexed: 11/29/2022] Open
Abstract
Herein, a promising heterogeneous nanoscale catalytic system constructed of chitosan (CTSN, as a polymeric basis), iron oxide nanoparticles (Fe3O4 NPs, as the magnetic agent), and copper oxide nanoparticles (CuO NPs, as the main catalytic active site) is presented. Firstly, a convenient synthetic route for preparation of this novel nanocatalyst (CTSN/Fe3O4-Cu) is presented. Further, the synergistic catalytic effect between the novel-designed catalyst and ultrasound waves (USW) in N-arylation coupling reactions of the imidazole derivatives (using various aryl halides) is precisely discussed. Concisely, high reaction yields (98%) have been obtained in short reaction time (10 min) through applying a partial amount (0.01 g) of this nanocatalyst. As the main reason for high catalytic activity of CTSN/Fe3O4-Cu, nanosized cluster-shaped morphology, which provides a wide surface active area, can be expressed. However, as the most distinguished properties of CTSN/Fe3O4-Cu catalytic system, high convenience in separation and excellent reusability could be mentioned. CTSN/Fe3O4-Cu nanocomposite can be easily recovered by using an external magnet and reused at least for eight times with no significant decline in the catalytic activity. Structural characterizations of this novel system have been done by various analytical methods and the obtained results have been well interpreted in the context.
Collapse
Affiliation(s)
- Reza Taheri-Ledari
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology Tehran 16846-13114 Iran +98 21 73021584 +98 21 73228313
| | - Seyed Masoud Hashemi
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology Tehran 16846-13114 Iran +98 21 73021584 +98 21 73228313
| | - Ali Maleki
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology Tehran 16846-13114 Iran +98 21 73021584 +98 21 73228313
| |
Collapse
|
21
|
Gallagher RT, Basu S, Stuart DR. Trimethoxyphenyl (TMP) as a Useful Auxiliary for
in situ
Formation and Reaction of Aryl(TMP)iodonium Salts: Synthesis of Diaryl Ethers. Adv Synth Catal 2019. [DOI: 10.1002/adsc.201901187] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Rory T. Gallagher
- Department of ChemistryPortland State University Portland Oregon 97201 United States
| | - Souradeep Basu
- Department of ChemistryPortland State University Portland Oregon 97201 United States
| | - David R. Stuart
- Department of ChemistryPortland State University Portland Oregon 97201 United States
| |
Collapse
|
22
|
Li S, Lv H, Yu Y, Ye X, Li B, Yang S, Mo Y, Kong X. Domino N-/C- or N-/N-/C-arylation of imidazoles to yield polyaryl imidazolium salts via atom-economical use of diaryliodonium salts. Chem Commun (Camb) 2019; 55:11267-11270. [PMID: 31475281 DOI: 10.1039/c9cc05237b] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Herein, we disclose a Cu-mediated domino di-/triarylation reaction of imidazoles to efficiently access polyaryl imidazolium salts in a single step by using two aryls as well as an anion of a diaryliodonium salt. The diarylation shows high atom economy and excellent selectivity with unsymmetrical iodonium salts.
Collapse
Affiliation(s)
- Shiqing Li
- Guangxi Key Laboratory of Electrochemical and Magneto-Chemical Function Materia, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, P. R. China.
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Dataset on synthesis and crystallographic structure of phenyl(TMP)iodonium(III) acetate. Data Brief 2019; 25:104063. [PMID: 31211208 PMCID: PMC6562192 DOI: 10.1016/j.dib.2019.104063] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 05/15/2019] [Accepted: 05/17/2019] [Indexed: 02/03/2023] Open
Abstract
The data in this article are related to research article ‘‘Efficient N-arylation of azole compounds utilizing selective aryl-transfer TMP-iodonium (III) reagents (Koseki et al., 2019). For the title compound, phenyl(2,4,6-trimethoxyphenyl)iodonium(III) acetate (Ph(TMP)IOAc), the single-crystal X-ray diffraction measurement together with NMR analysis, like also the method of synthesis and crystallization are presented. The X-ray structure analysis has revealed that the two types of geometries regarding the acetate anion attached to phenyl (TMP)iodonium (III) cation are found in the crystal states.
Collapse
|