1
|
Zulkifli SZ, Pungot NH, Saaidin AS, Jani NA, Mohammat MF. Synthesis and diverse biological activities of substituted indole β-carbolines: a review. Nat Prod Res 2024; 38:3793-3806. [PMID: 37770197 DOI: 10.1080/14786419.2023.2261141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 09/13/2023] [Indexed: 10/03/2023]
Abstract
β-Carboline bearing indole is one of the heterocyclic compounds that play a vital role in medicinal chemistry with various pharmacological effects such as anticancer, anti-acetylcholinesterase, anti-inflammation, antimalarial, antibacterial, anti-diabetic, and antioxidant. Over the last two decades, many studies on the synthesis and biological activity of indole β-carboline compounds have been conducted yet there is no appropriate data summary has been presented. Thus, the goal of this review was to highlight the synthesis pathway and bioactivity of substituted indole β-carboline reported from 2005 to date. In addition, this will encourage further investigation into the synthesis and evaluation of new indole β-carboline, in the hope of contributing to the development of potentially new medications for the treatment of various ailments.
Collapse
Affiliation(s)
- Siti Zafirah Zulkifli
- Organic Synthesis Laboratory, Institute of Science, Universiti Teknologi MARA, Cawangan Selangor, Bandar Puncak Alam, Selangor, Malaysia
- Faculty of Applied Sciences, Universiti Teknologi MARA, Shah Alam, Selangor, Malaysia
| | - Noor Hidayah Pungot
- Organic Synthesis Laboratory, Institute of Science, Universiti Teknologi MARA, Cawangan Selangor, Bandar Puncak Alam, Selangor, Malaysia
- Faculty of Applied Sciences, Universiti Teknologi MARA, Shah Alam, Selangor, Malaysia
| | - Aimi Suhaily Saaidin
- Organic Synthesis Laboratory, Institute of Science, Universiti Teknologi MARA, Cawangan Selangor, Bandar Puncak Alam, Selangor, Malaysia
| | - Nor Akmalazura Jani
- Faculty of Applied Sciences, Universiti Teknologi MARA, Cawangan Negeri Sembilan, Kuala Pilah, Negeri Sembilan, Malaysia
| | - Mohd Fazli Mohammat
- Organic Synthesis Laboratory, Institute of Science, Universiti Teknologi MARA, Cawangan Selangor, Bandar Puncak Alam, Selangor, Malaysia
- Faculty of Applied Sciences, Universiti Teknologi MARA, Shah Alam, Selangor, Malaysia
| |
Collapse
|
2
|
Pollák P, Garádi Z, Volk B, Dancsó A, Simig G, Milen M. Studies on the total syntheses of β‑carboline alkaloids orthoscuticellines A and B. Nat Prod Res 2024:1-9. [PMID: 38269548 DOI: 10.1080/14786419.2024.2306600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 01/13/2024] [Indexed: 01/26/2024]
Abstract
Orthoscuticellines A and B are newly isolated natural β-carboline alkaloids from the moss animal Orthoscuticella ventricosa. Herein, we report the first targeted total synthesis of orthoscuticelline B and an analogous synthetic method for the preparation of dihydro derivate of orthoscuticelline A. The new synthetic approach is based on commercially available and inexpensive reagents leading to a practical synthesis of the target molecules. The reaction sequence consisting of a T3P®-catalyzed amide formation followed by a Bischler-Napieralski cyclisation and a DDQ-assisted dehydrogenation step ensures a practical access to orthoscuticelline B in three steps with 58% overall yield.
Collapse
Affiliation(s)
- Patrik Pollák
- Directorate of Drug Substance Development, Egis Pharmaceuticals PLC, Budapest, Hungary
- Department of Organic Chemistry, Faculty of Pharmacy, Semmelweis University, Budapest, Hungary
| | - Zsófia Garádi
- Directorate of Drug Substance Development, Egis Pharmaceuticals PLC, Budapest, Hungary
| | - Balázs Volk
- Directorate of Drug Substance Development, Egis Pharmaceuticals PLC, Budapest, Hungary
| | - András Dancsó
- Directorate of Drug Substance Development, Egis Pharmaceuticals PLC, Budapest, Hungary
| | - Gyula Simig
- Directorate of Drug Substance Development, Egis Pharmaceuticals PLC, Budapest, Hungary
| | - Mátyás Milen
- Directorate of Drug Substance Development, Egis Pharmaceuticals PLC, Budapest, Hungary
| |
Collapse
|
3
|
Lentinuses A-B, two alkaloids from the marine-derived fungus Lentinus sajor-caju with potent anti-pulmonary fibrosis activity. Fitoterapia 2023; 166:105433. [PMID: 36646355 DOI: 10.1016/j.fitote.2023.105433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/11/2023] [Accepted: 01/11/2023] [Indexed: 01/15/2023]
Abstract
By adding natural amino acids into the medium as sole nitrogen source, twenty-four compounds, including two new alkaloids lentinuses A-B (1-2) with a rare oxazinone core in marine natural products, one new natural product 3-acetamido-4-phenylfurazan (3), 9β-ergosterol (22) were firstly discovered from a marine fungus, and twenty known compounds (4-21, 23-24) were isolated from the marine-derived fungus Lentinus sajor-caju. The chemical structures of all these compounds were elucidated by HRMS, NMR spectroscopy and X-ray diffraction. Compounds 1-24 were evaluated for their inhibitory activity against TGF-β1-induced collagen accumulation in human fetal lung fibroblasts (HFL1). Compounds 2, 3, 12, 22, and 23 showed potent activity against TGF-β1-induced collagen accumulation and low toxicity to HFL1 cells. The binding mode of lentinus B (2) with TGF-β1 receptor was then performed by using Schrödinger software, and the result showed that lentinus B possesses a strong binding force such as hydrogen bonding and hydrophobic interactions to the protein, which may provide a theoretical basis to design more potent anti-fibrotic drugs in the future.
Collapse
|
4
|
Poje G, Marinović M, Pavić K, Mioč M, Kralj M, de Carvalho LP, Held J, Perković I, Rajić Z. Harmicens, Novel Harmine and Ferrocene Hybrids: Design, Synthesis and Biological Activity. Int J Mol Sci 2022; 23:ijms23169315. [PMID: 36012590 PMCID: PMC9408872 DOI: 10.3390/ijms23169315] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/14/2022] [Accepted: 08/16/2022] [Indexed: 11/16/2022] Open
Abstract
Cancer and malaria are both global health threats. Due to the increase in the resistance to the known drugs, research on new active substances is a priority. Here, we present the design, synthesis, and evaluation of the biological activity of harmicens, hybrids composed of covalently bound harmine/β-carboline and ferrocene scaffolds. Structural diversity was achieved by varying the type and length of the linker between the β-carboline ring and ferrocene, as well as its position on the β-carboline ring. Triazole-type harmicens were prepared using Cu(I)-catalyzed azide-alkyne cycloaddition, while the synthesis of amide-type harmicens was carried out by applying a standard coupling reaction. The results of in vitro biological assays showed that the harmicens exerted moderate antiplasmodial activity against the erythrocytic stage of P. falciparum (IC50 in submicromolar and low micromolar range) and significant and selective antiproliferative activity against the MCF-7 and HCT116 cell lines (IC50 in the single-digit micromolar range, SI > 5.9). Cell localization experiments showed different localizations of nonselective harmicene 36 and HCT116-selective compound 28, which clearly entered the nucleus. A cell cycle analysis revealed that selective harmicene 28 had already induced G1 cell cycle arrest after 24 h, followed by G2/M arrest with a concomitant drastic reduction in the percentage of cells in the S phase, whereas the effect of nonselective compound 36 on the cell cycle was much less pronounced, which agreed with their different localizations within the cell.
Collapse
Affiliation(s)
- Goran Poje
- Faculty of Pharmacy and Biochemistry, University of Zagreb, 10 000 Zagreb, Croatia
| | - Marina Marinović
- Faculty of Pharmacy and Biochemistry, University of Zagreb, 10 000 Zagreb, Croatia
| | - Kristina Pavić
- Faculty of Pharmacy and Biochemistry, University of Zagreb, 10 000 Zagreb, Croatia
| | - Marija Mioč
- Laboratory of Experimental Therapy, Division of Molecular Medicine, Ruder Boškovic Institute, 10 000 Zagreb, Croatia
| | - Marijeta Kralj
- Laboratory of Experimental Therapy, Division of Molecular Medicine, Ruder Boškovic Institute, 10 000 Zagreb, Croatia
| | | | - Jana Held
- Institute of Tropical Medicine, University of Tübingen, 72074 Tübingen, Germany
- German Center for Infection Research (DZIF), Partner Site Tübingen, 72074 Tübingen, Germany
| | - Ivana Perković
- Faculty of Pharmacy and Biochemistry, University of Zagreb, 10 000 Zagreb, Croatia
| | - Zrinka Rajić
- Faculty of Pharmacy and Biochemistry, University of Zagreb, 10 000 Zagreb, Croatia
- Correspondence:
| |
Collapse
|
5
|
Gu W, Zhang J, Li H, Chen J, Xie R, Yuan C, Huang L, Hao X. Flavonoids and alkaloids from Lysionotus pauciflorus (Gesneriaceae). BIOCHEM SYST ECOL 2022. [DOI: 10.1016/j.bse.2022.104447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
6
|
Dinesh V, Nagarajan R. (NH 4) 2S 2O 8-Mediated Metal-Free Decarboxylative Formylation/Acylation of α-Oxo/Ketoacids and Its Application to the Synthesis of Indole Alkaloids. J Org Chem 2022; 87:10359-10365. [PMID: 35820161 DOI: 10.1021/acs.joc.2c00552] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A metal-free method for the formylation/acylation of indoles and β-carbolines with (NH4)2S2O8 via direct decarboxylative cross-coupling of α-oxo/ketoacids in moderate to good yields is described. The reaction occurs between ambient temperature and 40 °C under mild reaction conditions with commercially available starting materials. This methodology can be expanded to some biologically active indole alkaloids like pityriacitrins, eudistomins Y1 and Y3, and marinacarbolines A-D.
Collapse
Affiliation(s)
- Votarikari Dinesh
- School of Chemistry, University of Hyderabad, Hyderabad 500046, Telangana, India
| | - Rajagopal Nagarajan
- School of Chemistry, University of Hyderabad, Hyderabad 500046, Telangana, India
| |
Collapse
|
7
|
Taskesenligil Y, Aslan M, Cogurcu T, Saracoglu N. Directed C-H Functionalization of C3-Aldehyde, Ketone, and Acid/Ester-Substituted Free (NH) Indoles with Iodoarenes via a Palladium Catalyst System. J Org Chem 2022; 88:1299-1318. [PMID: 35609297 PMCID: PMC9903333 DOI: 10.1021/acs.joc.2c00716] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Pd(II)-catalyzed C-H arylations of free (NH) indoles including different carbonyl directing groups on C3-position with aryl iodides are demonstrated. Importantly, the reactions are carried out using the same catalyst system without any additional transient directing group (TDG). In this study, the formyl group as a directing group gave the C4-arylated indoles versus C2-arylation. Using this catalyst system, C-H functionalization of 3-acetylindoles provided domino C4-arylation/3,2-carbonyl migration products. This transformation involves the unusual migration of the acetyl group to the C2-position following C4-arylation in one pot. Meanwhile, migration of the acetyl group could be simply controlled and N-protected 3-acetylindoles afforded C4-arylation products without migration of the acetyl group. Functionalization of indole-3-carboxylic acid (or methyl ester) with aryl iodides using the present Pd(II)-catalyst system resulted in decarboxylation followed by the formation of C2-arylated indoles. Based on the control experiments and the literature, plausible mechanisms are proposed. The synthetic utilities of these acetylindole derivatives have also been demonstrated. Remarkably, C4-arylated acetylindoles have allowed the construction of functionalized pityiacitrin (a natural product).
Collapse
|
8
|
Alkaloids and flavonoids exert protective effects against UVB-induced damage in a 3D skin model using human keratinocytes. RESULTS IN CHEMISTRY 2022. [DOI: 10.1016/j.rechem.2022.100298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
9
|
Singh M, Jamra R, Mehra S, Rattan S, Singh V. Potassium
Tert
‐Butoxide‐Promoted Synthesis of Fluorescent β‐Carboline Tethered 1,3,5‐Triazines and Assessment of Their Luminescent Properties. ASIAN J ORG CHEM 2021. [DOI: 10.1002/ajoc.202100281] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Manpreet Singh
- Department of Chemistry Dr B. R. Ambedkar National Institute of Technology (NIT) Jalandhar Punjab 144011 India
| | - Rahul Jamra
- Department of Chemistry Dr B. R. Ambedkar National Institute of Technology (NIT) Jalandhar Punjab 144011 India
- Department of Chemistry Central University of Punjab Bathinda Punjab 151401 India
| | - Saloni Mehra
- Amity Institute of Applied Sciences Amity University Noida 201313 India
| | - Sunita Rattan
- Amity Institute of Applied Sciences Amity University Noida 201313 India
| | - Virender Singh
- Department of Chemistry Dr B. R. Ambedkar National Institute of Technology (NIT) Jalandhar Punjab 144011 India
- Department of Chemistry Central University of Punjab Bathinda Punjab 151401 India
| |
Collapse
|
10
|
Ke S, Xu T, Min Y, Wan Z, Yang Z, Wang K. Marine Alkaloid Pityriacitrin and Its Analogues: Discovery, Structures, Synthetic Methods and Biological Properties. Mini Rev Med Chem 2021; 21:233-244. [PMID: 33200706 DOI: 10.2174/1389557520666201116144156] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 09/18/2020] [Accepted: 09/18/2020] [Indexed: 11/22/2022]
Abstract
Pityriacitrin is a natural marine alkaloid with a typical β-carboline scaffold, and which has been demonstrated to exhibit diverse biological functions. The special structural features for pityriacitrin lead to the increasing research interest and the emergence of versatile derivatives, and many pityriacitrin analogues have been isolated or synthesized over the past decades. The structural diversity and evolved biological activity of these natural alkaloids can offer opportunities for the development of highly potential novel drugs with a new mechanism of action, and therefore, the aim of this brief review is to describe the discovery, synthesis, and biological properties of natural pityriacitrin and its derivatives, as well as the isolation source.
Collapse
Affiliation(s)
- Shaoyong Ke
- National Biopesticide Engineering Research Centre, Hubei Biopesticide Engineering Research Centre, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
| | - Tingting Xu
- National Biopesticide Engineering Research Centre, Hubei Biopesticide Engineering Research Centre, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
| | - Yong Min
- National Biopesticide Engineering Research Centre, Hubei Biopesticide Engineering Research Centre, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
| | - Zhongyi Wan
- National Biopesticide Engineering Research Centre, Hubei Biopesticide Engineering Research Centre, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
| | - Ziwen Yang
- National Biopesticide Engineering Research Centre, Hubei Biopesticide Engineering Research Centre, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
| | - Kaimei Wang
- National Biopesticide Engineering Research Centre, Hubei Biopesticide Engineering Research Centre, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
| |
Collapse
|
11
|
Marinović M, Poje G, Perković I, Fontinha D, Prudêncio M, Held J, Pessanha de Carvalho L, Tandarić T, Vianello R, Rajić Z. Further investigation of harmicines as novel antiplasmodial agents: Synthesis, structure-activity relationship and insight into the mechanism of action. Eur J Med Chem 2021; 224:113687. [PMID: 34274829 DOI: 10.1016/j.ejmech.2021.113687] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 07/02/2021] [Accepted: 07/03/2021] [Indexed: 01/30/2023]
Abstract
The rise of the resistance of the malaria parasite to the currently approved therapy urges the discovery and development of new efficient agents. Previously we have demonstrated that harmicines, hybrid compounds composed from β-carboline alkaloid harmine and cinnamic acid derivatives, linked via either triazole or amide bond, exert significant antiplasmodial activity. In this paper, we report synthesis, antiplasmodial activity and cytotoxicity of expanded series of novel triazole- and amide-type harmicines. Structure-activity relationship analysis revealed that amide-type harmicines 27, prepared at N-9 of the β-carboline core, exhibit superior potency against both erythrocytic stage of P. falciparum and hepatic stages of P. berghei. Notably, harmicine 27a, m-(trifluoromethyl)cinnamic acid derivative, exhibited the most favourable selectivity index (SI = 1105). Molecular dynamics simulations revealed the ATP binding site of P. falciparum heat shock protein 90 as a druggable binding location, confirmed the usefulness of the harmine's N-9 substitution and identified favourable N-H … π interactions involving Lys45 and the aromatic phenyl unit in the attached cinnamic acid fragment as crucial for the enhanced biological activity. Thus, those compounds were identified as promising and valuable leads for further derivatization in the search of novel, more efficient antiplasmodial agents.
Collapse
Affiliation(s)
- Marina Marinović
- University of Zagreb Faculty of Pharmacy and Biochemistry, A. Kovačića 1, 10000, Zagreb, Croatia
| | - Goran Poje
- University of Zagreb Faculty of Pharmacy and Biochemistry, A. Kovačića 1, 10000, Zagreb, Croatia
| | - Ivana Perković
- University of Zagreb Faculty of Pharmacy and Biochemistry, A. Kovačića 1, 10000, Zagreb, Croatia
| | - Diana Fontinha
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028, Lisboa, Portugal
| | - Miguel Prudêncio
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028, Lisboa, Portugal
| | - Jana Held
- University of Tübingen, Institute of Tropical Medicine, Wilhelmstraße 27, 72074, Tübingen, Germany
| | | | - Tana Tandarić
- Rudjer Bošković Institute, Division of Organic Chemistry and Biochemistry, Bijenička Cesta 54, 10 000, Zagreb, Croatia
| | - Robert Vianello
- Rudjer Bošković Institute, Division of Organic Chemistry and Biochemistry, Bijenička Cesta 54, 10 000, Zagreb, Croatia
| | - Zrinka Rajić
- University of Zagreb Faculty of Pharmacy and Biochemistry, A. Kovačića 1, 10000, Zagreb, Croatia.
| |
Collapse
|
12
|
Szepesi Kovács D, Hajdu I, Mészáros G, Wittner L, Meszéna D, Tóth EZ, Hegedűs Z, Ranđelović I, Tóvári J, Szabó T, Szilágyi B, Milen M, Keserű GM, Ábrányi-Balogh P. Synthesis and characterization of new fluorescent boro-β-carboline dyes. RSC Adv 2021; 11:12802-12807. [PMID: 35423835 PMCID: PMC8697281 DOI: 10.1039/d1ra02132j] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 03/24/2021] [Indexed: 12/12/2022] Open
Abstract
The first representatives of the new fluorescent boro-β-carboline family were synthesized by the insertion of the difluoroboranyl group into the oxaza or diaza core. The resulting compounds showed good photophysical properties with fine Stokes-shifts in the range of 38-85 nm with blue and green emission. The energetics of the excitation states and molecular orbitals of two members were investigated by quantum chemical computations suggesting effects for the improved properties of diazaborinino-carbolines over oxazaborolo-carbolines. These properties nominated this chemotype as a new fluorophore for the development of fluorescent probes. As an example, diazaborinino-carbolines were used for the specific labeling of anti-Her2 antibody trastuzumab. The fluorescent conjugate showed a high fluorophore-antibody ratio and was confirmed as a useful tool for labeling and confocal microscopy imaging of tumour cells in vitro together with the ex vivo two-photon microscopy imaging of tumour slices.
Collapse
Affiliation(s)
- Dénes Szepesi Kovács
- Research Centre for Natural Sciences, Medicinal Chemistry Research Group POB 286 1519 Budapest Hungary +36-13826961
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics 1521 Budapest Hungary
| | - Imre Hajdu
- Research Centre for Natural Sciences, Medicinal Chemistry Research Group POB 286 1519 Budapest Hungary +36-13826961
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics 1521 Budapest Hungary
| | - Gergely Mészáros
- Research Centre for Natural Sciences, Comparative Psychophysiology Research Group POB 286 1519 Budapest Hungary
- Faculty of Information Technology and Bionics, Pázmány Péter Catholic University POB 278 1444 Budapest Hungary
| | - Lucia Wittner
- Research Centre for Natural Sciences, Comparative Psychophysiology Research Group POB 286 1519 Budapest Hungary
| | - Domokos Meszéna
- Research Centre for Natural Sciences, Comparative Psychophysiology Research Group POB 286 1519 Budapest Hungary
- Faculty of Information Technology and Bionics, Pázmány Péter Catholic University POB 278 1444 Budapest Hungary
| | - Estilla Zsófia Tóth
- Research Centre for Natural Sciences, Comparative Psychophysiology Research Group POB 286 1519 Budapest Hungary
- János Szentágothai Doctoral School of Neurosciences, Semmelweis University 1085 Budapest Hungary
| | - Zita Hegedűs
- National Institute of Oncology, Department of Experimental Pharmacology POB 21 1525 Budapest Hungary
| | - Ivan Ranđelović
- National Institute of Oncology, Department of Experimental Pharmacology POB 21 1525 Budapest Hungary
| | - József Tóvári
- National Institute of Oncology, Department of Experimental Pharmacology POB 21 1525 Budapest Hungary
| | - Tímea Szabó
- Egis Pharmaceuticals Plc., Directorate of Drug Substance Development POB 100 1475 Budapest Hungary
| | - Bence Szilágyi
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics 1521 Budapest Hungary
| | - Mátyás Milen
- Egis Pharmaceuticals Plc., Directorate of Drug Substance Development POB 100 1475 Budapest Hungary
| | - György Miklós Keserű
- Research Centre for Natural Sciences, Medicinal Chemistry Research Group POB 286 1519 Budapest Hungary +36-13826961
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics 1521 Budapest Hungary
| | - Péter Ábrányi-Balogh
- Research Centre for Natural Sciences, Medicinal Chemistry Research Group POB 286 1519 Budapest Hungary +36-13826961
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics 1521 Budapest Hungary
| |
Collapse
|
13
|
Szabó T, Volk B, Milen M. Recent Advances in the Synthesis of β-Carboline Alkaloids. Molecules 2021; 26:663. [PMID: 33513936 PMCID: PMC7866041 DOI: 10.3390/molecules26030663] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 01/16/2021] [Accepted: 01/21/2021] [Indexed: 12/31/2022] Open
Abstract
β-Carboline alkaloids are a remarkable family of natural and synthetic indole-containing heterocyclic compounds and they are widely distributed in nature. Recently, these alkaloids have been in the focus of interest, thanks to their diverse biological activities. Their pharmacological activity makes them desirable as sedative, anxiolytic, hypnotic, anticonvulsant, antitumor, antiviral, antiparasitic or antimicrobial drug candidates. The growing potential inherent in them encourages many researchers to address the challenges of the synthesis of natural products containing complex β-carboline frameworks. In this review, we describe the recent developments in the synthesis of β-carboline alkaloids and closely related derivatives through selected examples from the last 5 years. The focus is on the key steps with improved procedures and synthetic approaches. Furthermore the pharmacological potential of the alkaloids is also highlighted.
Collapse
Affiliation(s)
| | | | - Mátyás Milen
- Egis Pharmaceuticals Plc., Directorate of Drug Substance Development, P.O. Box 100, H-1475 Budapest, Hungary; (T.S.); (B.V.)
| |
Collapse
|
14
|
Szabó T, Dancsó A, Volk B, Milen M. First total synthesis of β-carboline alkaloid trigonostemine G and its derivatives. Nat Prod Res 2019; 35:72-79. [PMID: 31140881 DOI: 10.1080/14786419.2019.1613401] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The β-carboline core is the base structure of several biologically active natural and unnatural compounds. Herein, we report the first total synthesis of trigonostemine G, which is a newly isolated natural β-carboline alkaloid from the twigs of Trigonostemon filipes. Synthesis of two structurally close derivatives of trigonostemine G is also reported. Key step of the syntheses involves a nucleophilic addition of 5-{[tert-butyl(dimethyl) silyl]oxy}-1H-indole to 1-formyl-β-carboline building blocks.
Collapse
Affiliation(s)
- Tímea Szabó
- Egis Pharmaceuticals Plc., Directorate of Drug Substance Development, Budapest, Hungary
| | - András Dancsó
- Egis Pharmaceuticals Plc., Directorate of Drug Substance Development, Budapest, Hungary
| | - Balázs Volk
- Egis Pharmaceuticals Plc., Directorate of Drug Substance Development, Budapest, Hungary
| | - Mátyás Milen
- Egis Pharmaceuticals Plc., Directorate of Drug Substance Development, Budapest, Hungary
| |
Collapse
|