1
|
Sato Y, Hisada T, Yamashita Y, Kobayashi S. Visible-Light-Driven Catalytic Alkylation of Reactive Alkyl Nitriles with Nonactivated Alkenes Using an Amine as a Hydrogen Atom Transfer Catalyst. Org Lett 2025. [PMID: 40302629 DOI: 10.1021/acs.orglett.5c01072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2025]
Abstract
We have developed a photoinduced catalytic alkylation reaction of reactive alkyl nitriles with nonactivated alkenes using a simple amine as a hydrogen atom transfer (HAT) catalyst. This reaction proceeds smoothly under mild reaction conditions with blue LED irradiation to afford a variety of alkylated nitriles. Not only were unactivated alkenes employable but also styrene derivatives. The key to success of this reaction is the generation of an electrophilic alkyl radical species from alkyl nitrile. The use of a readily available amine catalyst such as N,N-dialkylanilines is effective to promote this reaction efficiently.
Collapse
Affiliation(s)
- Yuki Sato
- Department of Chemistry, School of Science, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo, Japan, 113-0033
| | - Tomoya Hisada
- Department of Chemistry, School of Science, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo, Japan, 113-0033
| | - Yasuhiro Yamashita
- Department of Chemistry, School of Science, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo, Japan, 113-0033
| | - Shu Kobayashi
- Department of Chemistry, School of Science, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo, Japan, 113-0033
| |
Collapse
|
2
|
Saraswat SK, Naglah AM, Makasana J, Bakar HA, Ballal S, Abosaoda MK, Kavitha V, Bareja L, Bhakuni PN, Doshi OP. Fe 3O 4@SiO 2-LY-C-D-Pd as a new, effective, and magnetically recoverable catalyst for the synthesis of 1H-tetrazoles and asymmetric biphenyls. Sci Rep 2025; 15:12875. [PMID: 40234591 PMCID: PMC12000388 DOI: 10.1038/s41598-025-95922-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Accepted: 03/25/2025] [Indexed: 04/17/2025] Open
Abstract
This research project explored the synthesis and characterization of a newly developed C-D-Pd complex immobilized on Fe3O4@SiO2-LY, designed as a reusable magnetic catalyst. The heterogeneous nanocatalyst was thoroughly characterized using EDS, FTIR, XRD, XPS, TGA, SEM, VSM, and ICP techniques. The Fe3O4@SiO2-LY-C-D-Pd catalyst demonstrates exceptional performance in catalyzing C-C coupling reactions and 1H-tetrazole derivatives, achieving high product yields. This catalyst offers several advantages, including eco-friendly reaction conditions, minimal catalyst usage, a simple experimental setup, the elimination of harmful organic solvents, reduced reaction times, and the ability to accommodate diverse substrates. Additionally, the nanocatalyst is easily separable from the reaction mixture and can be reused multiple times without losing stability or catalytic efficiency.
Collapse
Affiliation(s)
- Shelesh Krishna Saraswat
- Department of Electronics and Communication Engineering, GLA University, Mathura, 281406, India.
| | - Ahmed M Naglah
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. BOX 2457, 11451, Riyadh, Saudi Arabia
| | - Jayanti Makasana
- Marwadi University Research Center, Department of Chemistry, Faculty of Science, Marwadi University, Rajkot, Gujarat, 360003, India
| | | | - Suhas Ballal
- Department of Chemistry and Biochemistry, School of Sciences, JAIN (Deemed to be University), Bangalore, Karnataka, India
| | - Munthar Kadhim Abosaoda
- College of Pharmacy, The Islamic University, Najaf, Iraq
- College of Pharmacy, The Islamic University of Al Diwaniyah, Al Diwaniyah, Iraq
| | - V Kavitha
- Department of Chemistry, Sathyabama Institute of Science and Technology, Chennai, Tamil Nadu, India
| | - Lakshay Bareja
- Centre for Research Impact and Outcome, Chitkara University Institute of Engineering and Technology, Chitkara University, Rajpura, Punjab, 140401, India
| | - Pushpa Negi Bhakuni
- Department of Allied Science, Graphic Era Hill University, Bhimtal, Uttarakhand, 248002, India
- Graphic Era Deemed to be University, Dehradun, Uttarakhand, India
| | - Ojas Prakashbhai Doshi
- Arnold and Marie Schwartz College of Pharmacy and Health Sciences, Long Island University, Brooklyn, NY, USA
| |
Collapse
|
3
|
Bandopadhyay N, Paramanik K, Sarkar G, Roy S, Panda SJ, Purohit CS, Biswas B, Das HS. Phenalenyl-ruthenium synergism for effectual catalytic transformations of primary amines to amides. Dalton Trans 2024; 53:13795-13804. [PMID: 39105500 DOI: 10.1039/d4dt01760a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/07/2024]
Abstract
The synthesis of amides holds great promise owing to their impeccable contributions as building blocks for highly valued functional derivatives. Herein, we disclose the design, synthesis and crystal structure of a mixed-ligand ruthenium(II) complex, [Ru(η6-Cym)(O,O-PLY)Cl], (1) where Cym = 1-isopropyl-4-methyl-benzene and O,O-PLY = deprotonated form of 9-hydroxy phenalenone (HO,O-PLY). The complex catalyzes the aerobic oxidation of various primary amines (RCH2NH2) to value-added amides (RCONH2) with excellent selectivity and efficiency under relatively mild conditions with common organic functional group tolerance. Structural, electrochemical, spectroscopic, and computational studies substantiate that the synergism between the redox-active ruthenium and π-Lewis acidic PLY moieties facilitate the catalytic oxidation of amines to amides. Additionally, the isolation and characterization of key intermediates during catalysis confirm two successive dehydrogenation steps leading to nitrile, which subsequently transform to the desired amide through hydration. The present synthetic approach is also extended to substitution-dependent tuning at PLY to tune the electronic nature of 1 and to assess substituent-mediated catalytic performance. The effect of substitution at the PLY moiety (5th position) leads to structural isomers, which were further evaluated for the catalytic transformations of amine to amides under similar reaction conditions.
Collapse
Affiliation(s)
- Nilaj Bandopadhyay
- Department of Chemistry, University of North Bengal, Darjeeling 734013, India.
| | | | - Gayetri Sarkar
- Department of Chemistry, University of North Bengal, Darjeeling 734013, India.
| | - Suvojit Roy
- Department of Chemistry, University of North Bengal, Darjeeling 734013, India.
| | - Subhra Jyoti Panda
- Department of Chemical Sciences, National Institute of Science Education and Research, Bhubaneswar, Orissa-751005, India
| | - Chandra Shekhar Purohit
- Department of Chemical Sciences, National Institute of Science Education and Research, Bhubaneswar, Orissa-751005, India
| | - Bhaskar Biswas
- Department of Chemistry, University of North Bengal, Darjeeling 734013, India.
| | - Hari Sankar Das
- Department of Chemistry, University of North Bengal, Darjeeling 734013, India.
| |
Collapse
|
4
|
Kumar V, Dhawan S, Bala R, Mohite SB, Singh P, Karpoormath R. Cu-catalysed transamidation of unactivated aliphatic amides. Org Biomol Chem 2022; 20:6931-6940. [PMID: 35983826 DOI: 10.1039/d2ob01152b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Direct transamidation is gaining prominence as a ground-breaking technique that generates a wide variety of amides without the requirement of acid-amine coupling or other intermediate steps. However, transamidation of unactivated aliphatic amides, on the other hand, has been a long-standing issue in comparison to transamidation of activated amides. Herein, we report a transamidation approach of an unactivated aliphatic amide using a copper catalyst and chlorotrimethylsilane as an additive. In addition, we used transamidation as a tool for selective N-C(O) cleavage and O-C(O) formation to synthesise 2-substituted benzoxazoles and benzothiazoles. The reactions were carried out without using any solvents and offered wide substitution scope.
Collapse
Affiliation(s)
- Vishal Kumar
- Department of Pharmaceutical Chemistry, Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal (Westville), Durban-4000, South Africa.
| | - Sanjeev Dhawan
- Department of Pharmaceutical Chemistry, Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal (Westville), Durban-4000, South Africa.
| | - Renu Bala
- Department of Pharmaceutical Chemistry, Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal (Westville), Durban-4000, South Africa.
| | - Sachin Balaso Mohite
- Department of Pharmaceutical Chemistry, Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal (Westville), Durban-4000, South Africa.
| | - Parvesh Singh
- School of Chemistry and Physics, University of KwaZulu-Natal (Westville campus), Private Bag X01, Scottsville, Durban, South Africa.
| | - Rajshekhar Karpoormath
- Department of Pharmaceutical Chemistry, Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal (Westville), Durban-4000, South Africa.
| |
Collapse
|
5
|
Li Y, Gong Y. Nitrile formation via dichlorocarbene insertion into the Si–N bond of Ln( iii) bis(trimethylsilyl)amide complexes. Chem Commun (Camb) 2022; 58:12552-12555. [DOI: 10.1039/d2cc04538a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Reactions of bis(trimethylsilyl)amino lanthanides and chloroform unprecedently generate the Me3SiCN complexes where the nitrile ligand is formed via insertion of dichlorocarbene into the Si–N bond of the lanthanide precursor.
Collapse
Affiliation(s)
- Yangjuan Li
- Department of Radiochemistry, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201800, China
| | - Yu Gong
- Department of Radiochemistry, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201800, China
| |
Collapse
|
6
|
Chang J, Ding M, Mao JX, Zhang J, Chen X. Reactions and catalytic applications of a PNCNP pincer palladium hydride complex. Dalton Trans 2022; 51:17602-17608. [DOI: 10.1039/d2dt03131k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
A PNCNP-pincer palladium hydride complex possesses strong deprotonating ability and versatile catalytic activity and its pincer backbone exhibits high water stability.
Collapse
Affiliation(s)
- Jiarui Chang
- Henan Key Laboratory of Boron Chemistry and Advanced Energy Materials, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Centre of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Man Ding
- Henan Key Laboratory of Boron Chemistry and Advanced Energy Materials, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Centre of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Jia-Xue Mao
- Henan Key Laboratory of Boron Chemistry and Advanced Energy Materials, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Centre of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Jie Zhang
- Henan Key Laboratory of Boron Chemistry and Advanced Energy Materials, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Centre of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Xuenian Chen
- Henan Key Laboratory of Boron Chemistry and Advanced Energy Materials, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Centre of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
- College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou, Henan 450001, China
| |
Collapse
|
7
|
Crochet P, Cadierno V. Access to
α
‐ and
β
‐Hydroxyamides and Ureas Through Metal‐Catalyzed C≡N Bond Hydration and Transfer Hydration Reactions. Eur J Inorg Chem 2021. [DOI: 10.1002/ejic.202100413] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Pascale Crochet
- Departamento de Química Orgánica e Inorgánica Universidad de Oviedo Julián Clavería 8 33006 Oviedo Spain
| | - Victorio Cadierno
- Departamento de Química Orgánica e Inorgánica Universidad de Oviedo Julián Clavería 8 33006 Oviedo Spain
| |
Collapse
|
8
|
An efficient hydration of nitriles with ruthenium-supported heterogeneous catalyst in water under moderate conditions. J IND ENG CHEM 2021. [DOI: 10.1016/j.jiec.2021.04.025] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
9
|
Li G, Szostak M. Synthesis of biaryl ketones by arylation of Weinreb amides with functionalized Grignard reagents under thermodynamic control vs. kinetic control of N,N-Boc 2-amides. Org Biomol Chem 2021; 18:3827-3831. [PMID: 32396595 DOI: 10.1039/d0ob00813c] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
A highly efficient method for chemoselective synthesis of biaryl ketones by arylation of Weinreb amides (N-methoxy-N-methylamides) with functionalized Grignard reagents is reported. This protocol offers rapid entry to functionalized biaryl ketones after Mg/halide exchange with i-PrMgCl·LiCl under operationally-simple and practical reaction conditions. The scope of the method is highlighted in >40 examples, including bioactive compounds and pharmaceutical derivatives. Collectively, this transition-metal-free approach offers a major advantage over the recently established cross-coupling of amides by oxidative addition of N-C(O) bonds. Considering the utility of amide acylation reactions in modern synthesis, we expect that this method will be of broad interest.
Collapse
Affiliation(s)
- Guangchen Li
- Department of Chemistry, Rutgers University, 73 Warren Street, Newark, NJ 07102, USA.
| | - Michal Szostak
- Department of Chemistry, Rutgers University, 73 Warren Street, Newark, NJ 07102, USA.
| |
Collapse
|
10
|
Govindan K, Lin WY. Ring Opening/Site Selective Cleavage in N-Acyl Glutarimide to Synthesize Primary Amides. Org Lett 2021; 23:1600-1605. [PMID: 33570960 DOI: 10.1021/acs.orglett.1c00010] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A LiOH-promoted hydrolysis selective C-N cleavage of twisted N-acyl glutarimide for the synthesis of primary amides under mild conditions has been developed. The reaction is triggered by a ring opening of glutarimide followed by C-N cleavage to afford primary amides using 2 equiv of LiOH as the base at room temperature. The efficacy of the reactions was considered and administrated for various aryl and alkyl substituents in good yield with high selectivity. Moreover, gram-scale synthesis of primary amides using a continuous flow method was achieved. It is noted that our new methodology can apply under both batch and flow conditions for synthetic and industrial applications.
Collapse
Affiliation(s)
- Karthick Govindan
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung 80708, Taiwan, ROC
| | - Wei-Yu Lin
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung 80708, Taiwan, ROC.,Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan, ROC.,Drug Development and Value Creation Research Centre, Kaohsiung Medical University, Kaohsiung 80708, Taiwan, ROC
| |
Collapse
|
11
|
Arora V, Narjinari H, Nandi PG, Kumar A. Recent advances in pincer-nickel catalyzed reactions. Dalton Trans 2021; 50:3394-3428. [PMID: 33595564 DOI: 10.1039/d0dt03593a] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Organometallic catalysts have played a key role in accomplishing numerous synthetically valuable organic transformations that are either otherwise not possible or inefficient. The use of precious, sparse and toxic 4d and 5d metals are an apparent downside of several such catalytic systems despite their immense success over the last several decades. The use of complexes containing Earth-abundant, inexpensive and less hazardous 3d metals, such as nickel, as catalysts for organic transformations has been an emerging field in recent times. In particular, the versatile nature of the corresponding pincer-metal complexes, which offers great control of their reactivity via countless variations, has garnered great interest among organometallic chemists who are looking for greener and cheaper alternatives. In this context, the current review attempts to provide a glimpse of recent developments in the chemistry of pincer-nickel catalyzed reactions. Notably, there have been examples of pincer-nickel catalyzed reactions involving two electron changes via purely organometallic mechanisms that are strikingly similar to those observed with heavier Pd and Pt analogues. On the other hand, there have been distinct differences where the pincer-nickel complexes catalyze single-electron radical reactions. The applicability of pincer-nickel complexes in catalyzing cross-coupling reactions, oxidation reactions, (de)hydrogenation reactions, dehydrogenative coupling, hydrosilylation, hydroboration, C-H activation and carbon dioxide functionalization has been reviewed here from synthesis and mechanistic points of view. The flurry of global pincer-nickel related activities offer promising avenues in catalyzing synthetically valuable organic transformations.
Collapse
Affiliation(s)
- Vinay Arora
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati-781039, Assam, India.
| | - Himani Narjinari
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati-781039, Assam, India.
| | - Pran Gobinda Nandi
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati-781039, Assam, India.
| | - Akshai Kumar
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati-781039, Assam, India. and Centre for Nanotechnology, Indian Institute of Technology Guwahati, Guwahati-781039, Assam, India
| |
Collapse
|
12
|
Casella G, Carlotto S, Mozzon M, Sgarbossa P, Bertani R, Casarin M. A DFT mechanistic study of the synthesis of trans-Z,Z-[PtIICl(NH3){HN = C(NH2)Me}2]Cl from addition of NH3 to trans-[PtIICl2(N CMe)2]. Inorganica Chim Acta 2020. [DOI: 10.1016/j.ica.2020.119847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
13
|
Arafa WAA. Ru-Based Complexes as Heterogeneous Potential Catalysts for the Amidation of Aldehydes and Nitriles in Neat Water. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2020. [DOI: 10.1246/bcsj.20200071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Wael Abdelgayed Ahmed Arafa
- Chemistry Department, College of Science, Jouf University, P.O. Box 2014, Sakaka, Aljouf, Kingdom of Saudi Arabia
- Chemistry Department, Faculty of Science, Fayoum University, P.O. Box 63514, Fayoum, Egypt
| |
Collapse
|
14
|
Tarasova OA, Nedolya NA, Albanov AI, Trofimov BA. 2‐Amino‐5‐(cyanomethylsulfanyl)‐1
H
‐pyrroles from Propargylamines, Isothiocyanates, and Bromoacetonitrile by One‐Pot Synthetic Protocol. ChemistrySelect 2020. [DOI: 10.1002/slct.202000577] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Olga A. Tarasova
- An Unsaturated Heteroatom Compounds Laboratory A. E. Favorsky Irkutsk Institute of Chemistry, Siberian BranchRussian Academy of Sciences 1 Favorsky Str. 664033 Irkutsk Russian Federation
| | - Nina A. Nedolya
- An Unsaturated Heteroatom Compounds Laboratory A. E. Favorsky Irkutsk Institute of Chemistry, Siberian BranchRussian Academy of Sciences 1 Favorsky Str. 664033 Irkutsk Russian Federation
| | - Alexander I. Albanov
- An Unsaturated Heteroatom Compounds Laboratory A. E. Favorsky Irkutsk Institute of Chemistry, Siberian BranchRussian Academy of Sciences 1 Favorsky Str. 664033 Irkutsk Russian Federation
| | - Boris A. Trofimov
- An Unsaturated Heteroatom Compounds Laboratory A. E. Favorsky Irkutsk Institute of Chemistry, Siberian BranchRussian Academy of Sciences 1 Favorsky Str. 664033 Irkutsk Russian Federation
| |
Collapse
|
15
|
Ganesan M, Nagaraaj P. Recent developments in dehydration of primary amides to nitriles. Org Chem Front 2020. [DOI: 10.1039/d0qo00843e] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Various dehydration methods available for the direct conversion of amides to the corresponding nitriles have been reviewed.
Collapse
Affiliation(s)
- Muthupandian Ganesan
- Toxicology Division
- Regional Forensic Science Laboratory
- Forensic Sciences Department
- Chennai-4
- India
| | | |
Collapse
|