1
|
Wang LY, Xia GY, Xia H, Wei XH, Lin S. (±)-Yanhusuomide A, a pair of ornithine-fused benzylisoquinoline enantiomers from Corydalis yanhusuo. Bioorg Chem 2023; 133:106407. [PMID: 36758275 DOI: 10.1016/j.bioorg.2023.106407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 01/30/2023] [Accepted: 02/01/2023] [Indexed: 02/09/2023]
Abstract
(±)-Yanhusuomide A (1), a novel enantiomeric pair of ornithine-fused benzylisoquinoline, were characterized from the dried tubers of Corydalis yanhusuo, along with a biogenetically related intermediate oblongine (2). Yanhusuomide A features an unprecedented skeleton based on a benzylisoquinoline coupled with an ornithine derivative to form a rare 5,6-dihydro-4H-pyrido[3,4,5-de]quinazoline motif. Plausible biosynthetic pathway of 1 was proposed, and (±)-yanhusuomide A (1) presented potential inhibitory bioactivity against acetylcholinesterase (AChE) with IC50 = 14.07 ± 2.38 μM. The simulation of molecular docking displayed that 1 generated strong interaction with Asp-74 and Trp-86 residues of AChE through attractive charge of the quaternary nitrogen.
Collapse
Affiliation(s)
- Ling-Yan Wang
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100700, China
| | - Gui-Yang Xia
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100700, China
| | - Huan Xia
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100700, China
| | - Xiao-Hong Wei
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100700, China
| | - Sheng Lin
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100700, China.
| |
Collapse
|
2
|
Teerapongpisan P, Suthiphasilp V, Phukhatmuen P, Rujanapun N, Chaiyosang B, Tontapha S, Maneerat T, Patrick BO, Duangyod T, Charoensup R, Andersen RJ, Laphookhieo S. Dimeric aporphine alkaloids from the twigs of Trivalvaria costata (Hook.f. & Thomson) I.M.Turner. PHYTOCHEMISTRY 2023; 207:113586. [PMID: 36632950 DOI: 10.1016/j.phytochem.2023.113586] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 01/05/2023] [Accepted: 01/05/2023] [Indexed: 06/17/2023]
Abstract
A phytochemical investigation of the twig extract of Trivalvaria costata (Hook.f. & Thomson) I.M.Turner has identified ten undescribed dimeric aporphine alkaloids, trivalcostatines A-J, one undescribed isoquinoline alkaloid, trivalcostaisoquinoline, and four known aporphine alkaloids. Their structures were elucidated by detailed analysis of NMR and HRESITOFMS data. Three of the dimeric aporphine structures were confirmed by single crystal X-ray diffraction analysis. All of the dimeric aporphine alkaloids were isolated as mixtures of atropisomers. Several of them were resolved by chiral-phase HPLC and the absolute configurations of the pure atropisomers were assigned by calculated and experimental ECD analysis. Bidebilines A and B, heteropsine, and urabaine showed α-glucosidase inhibitory activities with IC50 values in the range of 4.1-11 μM.
Collapse
Affiliation(s)
- Passakorn Teerapongpisan
- Center of Chemical Innovation for Sustainability (CIS) and School of Science, Mae Fah Luang University, Chiang Rai, 57100, Thailand
| | - Virayu Suthiphasilp
- Department of Industrial Technology and Innovation Management, Faculty of Science and Technology, Pathumwan Institute of Technology, Bangkok, 10330, Thailand
| | - Piyaporn Phukhatmuen
- Center of Chemical Innovation for Sustainability (CIS) and School of Science, Mae Fah Luang University, Chiang Rai, 57100, Thailand
| | - Narawadee Rujanapun
- Medicinal Plant Innovation Center of Mae Fah, Luang University, Chiang Rai, 57100, Thailand
| | - Boonyanoot Chaiyosang
- Natural Products Research Unit, Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Sarawut Tontapha
- Institute of Nanomaterials Research and Innovation for Energy, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Tharakorn Maneerat
- Center of Chemical Innovation for Sustainability (CIS) and School of Science, Mae Fah Luang University, Chiang Rai, 57100, Thailand; Medicinal Plant Innovation Center of Mae Fah, Luang University, Chiang Rai, 57100, Thailand
| | - Brian O Patrick
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC, V6T 1Z1, Canada
| | - Thidarat Duangyod
- Medicinal Plant Innovation Center of Mae Fah, Luang University, Chiang Rai, 57100, Thailand; School of Integrative Medicine, Mae Fah Luang University, Chiang Rai, 57100, Thailand
| | - Rawiwan Charoensup
- Medicinal Plant Innovation Center of Mae Fah, Luang University, Chiang Rai, 57100, Thailand; School of Integrative Medicine, Mae Fah Luang University, Chiang Rai, 57100, Thailand
| | - Raymond J Andersen
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC, V6T 1Z1, Canada; Department of Earth, Ocean & Atmospheric Sciences, University of British Columbia, 2036 Main Mall, Vancouver, BC, V6T 1Z1, Canada.
| | - Surat Laphookhieo
- Center of Chemical Innovation for Sustainability (CIS) and School of Science, Mae Fah Luang University, Chiang Rai, 57100, Thailand; Medicinal Plant Innovation Center of Mae Fah, Luang University, Chiang Rai, 57100, Thailand.
| |
Collapse
|
3
|
(+)/(-)-Yanhusamides A-C, three pairs of unprecedented benzylisoquinoline-pyrrole hetero-dimeric alkaloid enantiomers from Corydalis yanhusuo. Acta Pharm Sin B 2023; 13:754-764. [PMID: 36873186 PMCID: PMC9979263 DOI: 10.1016/j.apsb.2022.10.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/30/2022] [Accepted: 10/19/2022] [Indexed: 11/06/2022] Open
Abstract
A chemical investigation on the aqueous extract of Corydalis yanhusuo tubers led to the isolation and structural elucidation of three pairs of trace enantiomeric hetero-dimeric alkaloids, (+)/(-)-yanhusamides A-C (1-3), featuring an unprecedented 3,8-diazatricylco[5.2.2.02,6]undecane-8,10-diene bridged system. Their structures were exhaustively characterized by X-ray diffraction, comprehensive spectroscopic data analysis, and computational methods. Guided by the hypothetical biosynthetic pathway for 1-3, a gram-scale biomimetic synthesis of (±)-1 was achieved in 3 steps using photoenolization/Diels-Alder (PEDA) [4+2] cycloaddition. Compounds 1‒3 exhibited potent inhibition of NO production induced by LPS in RAW264.7 macrophages. The in vivo assay showed that oral administration of 30 mg/kg of (±)-1 attenuated the severity of rat adjuvant-induced arthritis (AIA). Additionally, (±)-1 induced a dose-dependent antinociceptive effect in the acetic acid-induced mice writhing assay.
Collapse
|
4
|
Xia GY, Fang DJ, Wang LY, Xia H, Wang YN, Shang HC, Lin S. 13,13a-seco-protoberberines from the tubers of Corydalis yanhusuo and their anti-inflammatory activity. PHYTOCHEMISTRY 2022; 194:113023. [PMID: 34839130 DOI: 10.1016/j.phytochem.2021.113023] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 11/06/2021] [Accepted: 11/14/2021] [Indexed: 06/13/2023]
Abstract
Six undescribed protoberberine derivatives including two pairs of enantiomers, named yanhusanines G-L, along with fifteen reported protoberberine alkaloids, were isolated from the tubers of Corydalis yanhusuo. Among them, yanhusanines H-L feature a unique 13,13a-seco skeleton which is rare in nature. Their structural elucidations were achieved by extensive spectroscopic analysis and quantum chemistry calculations. A biogenetic route for yanhusanines H-L was proposed. Bioassay results showed that yanhusanine J exhibited potent inhibitory effect against the nitric oxide (NO) production in lipopolysaccharide (LPS) induced RAW 264.7 cells (IC50 = 2.25 ± 1.32 μM). Western blot analysis demonstrated that yanhusanine J exerted its anti-inflammatory effect via suppressing the nuclear factor kappa B (NF-κB) pathway, together with the decrease of the inflammatory factors TNF-α, IL-6 and IL-1β. Furthermore, molecular simulation docking indicated that yanhusanine J had strong interaction with the active site of the inducible nitric oxide synthase (iNOS) protein.
Collapse
Affiliation(s)
- Gui-Yang Xia
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100700, China
| | - Dong-Jie Fang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Ling-Yan Wang
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100700, China
| | - Huan Xia
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100700, China
| | - Ya-Nan Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Hong-Cai Shang
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100700, China.
| | - Sheng Lin
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100700, China.
| |
Collapse
|
5
|
Wang L, Xia H, Wu Y, Wang Y, Lin P, Lin S. Secoyanhusamine A, an Oxidatively Ring-Opened Isoquinoline Inner Salt From Corydalis yanhusuo. Front Chem 2022; 9:831173. [PMID: 35178381 PMCID: PMC8843934 DOI: 10.3389/fchem.2021.831173] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 12/24/2021] [Indexed: 11/13/2022] Open
Abstract
Secoyanhusamine A (1), a rare rearranged seco-isoquinoline alkaloid derived from ring oxidative cleavage, was isolated from an aqueous extract of Corydalis yanhusuo tubers, together with its biosynthetic precursor dehydrocorybulbine (2). Secoyanhusamine A (1) was the first example of a highly oxidized isoquinoline inner salt resulting in a 5-(2-azanylethyl)-2-carboxylate-4-oxo-4H-pyran ring system. The biosynthetic pathway of 1 was also postulated. Secoyanhusamine A (1) exhibited potent inhibition against acetylcholinesterase (AChE) with an IC50 value of 0.81 ± 0.13 μM. Molecular simulation docking demonstrated that 1 created a strong interaction with the Asp-74 residue of AChE via attractive charge of the quaternary nitrogen.
Collapse
Affiliation(s)
- Lingyan Wang
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Huan Xia
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Yuzhuo Wu
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Yanan Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Pengcheng Lin
- College of Pharmaceutical Sciences, Qinghai University for Nationalities, Xining, China
- *Correspondence: Pengcheng Lin, ; Sheng Lin,
| | - Sheng Lin
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
- *Correspondence: Pengcheng Lin, ; Sheng Lin,
| |
Collapse
|
6
|
Lin PC, Wang X, Zhong XJ, Zhou N, Wu L, Li JJ, Hu YT, Shang XY. Chemical characterization of a PD-1/PD-L1 inhibitory activity fraction of the ethanol extract from Gymnadenia conopsea. JOURNAL OF ASIAN NATURAL PRODUCTS RESEARCH 2021; 23:235-249. [PMID: 33263258 DOI: 10.1080/10286020.2020.1844190] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Accepted: 10/25/2020] [Indexed: 06/12/2023]
Abstract
Searching for PD-1/PD-L1 inhibitor from medicinal plants has become a potential method to discover small molecular cancer immunotherapy drugs. Using PD-1/PD-L1 inhibitory activity assay in vitro, a bioactive fraction was obtained from the ethanol extract of Gymnadenia conopsea. A sensitive UPLC-HRMS/MS method was established for the rapid screening and identification of compositions from bioactive fraction. Based on the characteristic fragmentation patterns of standards analysis and extracted ion chromatogram (EIC) method, 46 compounds were rapidly screened and identified (including 35 succinic acid ester glycosides and 11 other compounds), among which 17 compounds were tentatively identified as new compounds.
Collapse
Affiliation(s)
- Peng-Cheng Lin
- College of Pharmaceutical Sciences, Qinghai Nationalities University, Xining 810000, China
| | - Xin Wang
- Beijing Key Laboratory of Bioactive Substances and Functional Foods, Beijing Union University, Beijing 100191, China
| | - Xiang-Jian Zhong
- Beijing Key Laboratory of Bioactive Substances and Functional Foods, Beijing Union University, Beijing 100191, China
| | - Na Zhou
- Beijing Key Laboratory of Bioactive Substances and Functional Foods, Beijing Union University, Beijing 100191, China
| | - Lei Wu
- College of Pharmaceutical Sciences, Qinghai Nationalities University, Xining 810000, China
| | - Jin-Jie Li
- Beijing Key Laboratory of Bioactive Substances and Functional Foods, Beijing Union University, Beijing 100191, China
| | - Yang-Tao Hu
- The 908th Hospital of Chinese People's Liberation Army Joint Logistic Support Force, Nanchang 330047 China
| | - Xiao-Ya Shang
- Beijing Key Laboratory of Bioactive Substances and Functional Foods, Beijing Union University, Beijing 100191, China
| |
Collapse
|