1
|
Fang WL, Liang ZY, Guo XF, Wang H. A D-π-A-based near-infrared fluorescent probe with large Stokes shift for the detection of cysteine in vivo. Talanta 2024; 268:125354. [PMID: 37918245 DOI: 10.1016/j.talanta.2023.125354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 10/06/2023] [Accepted: 10/26/2023] [Indexed: 11/04/2023]
Abstract
D-π-A dyes are an ideal strategy for building near-infrared fluorescent probes that have a large Stokes shift due to their excellent properties of adjustable emission wavelength and Stokes shift. Developing a near-infrared (NIR) fluorescent probe (JTPQ-Cys) capable of detecting cysteine (Cys) was the aim of this study. In JTPQ-Cys, julolidine served as the electron donor (D) and quinoline as the electron acceptor (A), with 3,4-ethylenedioxythiophene as the π-bridge. The π-conjugation and vibrational/rotational activity of the molecule were increased by the introduction of 3,4-ethylenedioxythiophene, causing the molecule to exhibit NIR emission and a large Stokes shift. When JTPQ-Cys was used to detect Cys, a clear fluorescence turn-on signal was observed at 741 nm, together with a Stokes shift of 268 nm. The limit of detection of JTPQ-Cys for Cys is 24 nM. Moreover, JTPQ-Cys has been utilized successfully for imaging studies of Cys in cells and zebrafish because it has good photostability, low cytotoxicity, and a high signal-to-noise ratio. Overall, our findings demonstrate the potential of JTPQ-Cys to be one of the best choices for detecting Cys in biological systems, and JTPQ is an ideal fluorophore to construct fluorescence dyes for bioimaging.
Collapse
Affiliation(s)
- Wen-Le Fang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China; Shenzhen Baoan District Center for Disease Control and Prevention, Shenzhen, 518101, Guangdong, China
| | - Zhi-Yong Liang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Xiao-Feng Guo
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Hong Wang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China.
| |
Collapse
|
2
|
Zhao H, Liu K, Zhou L, Zhang T, Han Z, Wang L, Ji X, Cui Y, Hu J, Ma G. Platinum Palladium Bimetallic Nanozymes Stabilized with Vancomycin for the Sensitive Colorimetric Determination of L-cysteine. Biomolecules 2023; 13:1254. [PMID: 37627319 PMCID: PMC10452367 DOI: 10.3390/biom13081254] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/05/2023] [Accepted: 08/11/2023] [Indexed: 08/27/2023] Open
Abstract
Many diseases in the human body are related to the level of L-cysteine. Therefore, it is crucial to establish an efficient, simple and sensitive platform for L-cysteine detection. In this work, we synthesized platinum palladium bimetallic nanoparticles (Van-Ptm/Pdn NPs) using vancomycin hydrochloride (Van) as a stabilizer, which exhibited high oxidase-like catalytic activity. In addition, the catalytic kinetics of the Van-Pt1/Pd1 NPs followed the typical Michaelis-Menten equation, exhibiting a strong affinity for 3,3',5,5'-tetramethylbenzidine substrates. More importantly, we developed a simple and effective strategy for the sensitive colorimetric detection of L-cysteine using biocompatible Van-Pt1/Pd1 NPs. The detection limit was low, at 0.07 μM, which was lower than the values for many previously reported enzyme-like detection systems. The colorimetric method of the L-cysteine assay had good selectivity. The established method for the detection of L-cysteine showed promise for biomedical analysis.
Collapse
Affiliation(s)
- Han Zhao
- Hebei Key Laboratory of Nano-Biotechnology, College of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China; (H.Z.); (K.L.); (L.Z.); (T.Z.); (J.H.)
- State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004, China
| | - Kai Liu
- Hebei Key Laboratory of Nano-Biotechnology, College of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China; (H.Z.); (K.L.); (L.Z.); (T.Z.); (J.H.)
| | - Lijie Zhou
- Hebei Key Laboratory of Nano-Biotechnology, College of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China; (H.Z.); (K.L.); (L.Z.); (T.Z.); (J.H.)
| | - Tingting Zhang
- Hebei Key Laboratory of Nano-Biotechnology, College of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China; (H.Z.); (K.L.); (L.Z.); (T.Z.); (J.H.)
| | - Zengsheng Han
- Hebei Key Laboratory of Nano-Biotechnology, College of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China; (H.Z.); (K.L.); (L.Z.); (T.Z.); (J.H.)
| | - Longgang Wang
- Hebei Key Laboratory of Nano-Biotechnology, College of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China; (H.Z.); (K.L.); (L.Z.); (T.Z.); (J.H.)
- State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004, China
| | - Xianbing Ji
- Department of Environmental Engineering, Hebei University of Environmental Engineering, Qinhuangdao 066102, China; (X.J.); (Y.C.)
| | - Yanshuai Cui
- Department of Environmental Engineering, Hebei University of Environmental Engineering, Qinhuangdao 066102, China; (X.J.); (Y.C.)
| | - Jie Hu
- Hebei Key Laboratory of Nano-Biotechnology, College of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China; (H.Z.); (K.L.); (L.Z.); (T.Z.); (J.H.)
| | - Guanglong Ma
- Centre for Cancer Immunology, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK;
| |
Collapse
|
3
|
Mirac Dizman H, Kazancioglu EO, Shigemune T, Takahara S, Arsu N. High sensitivity colorimetric determination of L-cysteine using gold nanoparticles functionalized graphene oxide prepared by photochemical reduction method. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 264:120294. [PMID: 34455380 DOI: 10.1016/j.saa.2021.120294] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 07/27/2021] [Accepted: 08/14/2021] [Indexed: 06/13/2023]
Abstract
This study aimed for the development of a cost effective and efficient method for L-cysteine detection, without employing expensive instrumentation within a short analysis time. The proposed method has been involved in the photochemical preparation of gold nanoparticles and gold nanoparticles on graphene oxide nanostructures. The gold nanoparticles and gold nanoparticles on graphene oxide acted as simple and sensitive nano-sensors for L-cysteine, due to the molecular structure of the L-cysteine presented -NH2 and -SH, which is very attractive for coordination to gold nanoparticles and crosslink gold nanoparticles causing aggregation and color change. By using the gold nanoparticles on graphene oxide as a probe, the colorimetric detection of L-cysteine in a nanomolar order concentration was demonstrated.
Collapse
Affiliation(s)
- H Mirac Dizman
- Department of Chemistry, Yildiz Technical University, Davutpasa Campus, Istanbul 34220, Turkey
| | | | - Takuya Shigemune
- Department of Materials Science, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522, Japan
| | - Shigeru Takahara
- Department of Materials Science, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522, Japan
| | - Nergis Arsu
- Department of Chemistry, Yildiz Technical University, Davutpasa Campus, Istanbul 34220, Turkey.
| |
Collapse
|
4
|
Üçüncü M, Zeybek H, Karakuş E, Üçüncü C, Emrullahoğlu M. A new fluorescent ‘turn on’ probe for rapid detection of biothiols. Supramol Chem 2021. [DOI: 10.1080/10610278.2021.1893321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Muhammed Üçüncü
- Department of Analytical Chemistry, Faculty of Pharmacy, İzmir Katip Çelebi University, İzmir, Turkey
| | - Hüseyin Zeybek
- Department of Chemistry, Faculty of Science, Izmir Institute of Technology, Urla, Turkey
| | - Erman Karakuş
- Organic Chemistry Laboratory, Chemistry Group, the Scientific and Technological Research Council of Turkey, National Metrology Institute, (TUBITAK UME), Gebze, Turkey
| | - Canan Üçüncü
- Department of Chemistry, Faculty of Science, Izmir Institute of Technology, Urla, Turkey
| | - Mustafa Emrullahoğlu
- Department of Chemistry, Faculty of Science, Izmir Institute of Technology, Urla, Turkey
- Department of Photonics, İzmir Institute of Technology, İzmir, Turkey
| |
Collapse
|