1
|
Kim S, Lee S. Electrochemical synthesis of sulfinic and sulfonic esters from sulfonyl hydrazides. Org Biomol Chem 2024; 22:4436-4444. [PMID: 38742933 DOI: 10.1039/d4ob00215f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
An electrochemical synthetic method for the synthesis of sulfinic esters and sulfonic esters from sulfonyl hydrazides was developed. Alkyl sulfinic esters were synthesized by treating sulfonyl hydrazides with trialkyl orthoformate in a DMF solvent at a constant current of 5 mA and then optimizing the reaction conditions. Conversely, alkyl sulfonic esters were exclusively obtained when the reaction was conducted in alkyl alcohol solvents at a constant current of 15 mA. The various substituted arylsulfonyl hydrazides afforded moderate to good yields of the desired sulfinic esters and sulfonic esters. Mechanistic investigations revealed that sulfonyl radicals were formed through electrochemical oxidation and that they react with alkyl radicals or alkoxy radicals to generate the respective ester products.
Collapse
Affiliation(s)
- Suji Kim
- Department of Chemistry, Chonnam National University, Gwangju, 61186 Republic of Korea.
| | - Sunwoo Lee
- Department of Chemistry, Chonnam National University, Gwangju, 61186 Republic of Korea.
| |
Collapse
|
2
|
Feng J, Wang Y, Gao L, Yu Y, Baell JB, Huang F. Electrochemical Synthesis of Polysubstituted Sulfonated Pyrazoles via Cascade Intermolecular Condensation, Radical-Radical Cross Coupling Sulfonylation, and Pyrazole Annulation. J Org Chem 2022; 87:13138-13153. [PMID: 36166815 DOI: 10.1021/acs.joc.2c01609] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Electrochemical synthesis of polysubstituted sulfonated pyrazoles from enaminones and sulfonyl hydrazides was established under metal-free, exogenous-oxidant-free, and mild conditions. By judicious choice of different electrochemical reaction conditions, NH2-functionalized enaminones or N,N-disubstituted enaminones can react with aryl/alkyl sulfonyl hydrazides to afford tetra- or trisubstituted sulfonated pyrazoles in moderate to good yields, respectively. The gram-scale electrochemical transformation demonstrated the efficiency and practicability of this synthetic strategy. In addition, the sulfonated NH-pyrazole can be obtained via the dissociation of the N-tosyl group. Mechanistic studies reveal that the electrochemical cascade reaction synthesis of polysubstituted sulfonated pyrazoles proceeded via the sequence of intermolecular condensation, radical-radical cross coupling sulfonylation, and pyrazole annulation.
Collapse
Affiliation(s)
- Jiajun Feng
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211816, PR China
| | - Yuzhi Wang
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211816, PR China
| | - Luoyu Gao
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211816, PR China
| | - Yang Yu
- School of Environmental Science and Engineering, Nanjing Tech University, Nanjing 211816, PR China
| | - Jonathan B Baell
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211816, PR China.,Medicinal Chemistry Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Fei Huang
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211816, PR China.,School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, PR China
| |
Collapse
|
3
|
One‐pot synthesis of 2‐imino‐1,3,4‐thiadiazolines from acylhydrazides and isothiocyanates. B KOREAN CHEM SOC 2022. [DOI: 10.1002/bkcs.12585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
4
|
Lee S, Lee G, Park S, Yim D, Yim T, Kim J, Kim H. Theoretical Protocol Based on Long-Range Corrected Density Functional Theory and Tuning of Range-Split Parameter for Two-Electron Two-Proton Reduction of Phenylazocarboxylates. J Phys Chem A 2022; 126:2430-2436. [PMID: 35412306 DOI: 10.1021/acs.jpca.1c10637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A theoretical protocol based on long-range corrected density functional theory is suggested for a highly accurate estimation of the two-electron two-proton (2e2p) reduction potential of ethyl 2-phenylazocarboxylate derivatives. Geometry optimization and single-point energy refinement with ωB97X-D are recommended. The impact of polarization and diffusion functions in the basis sets on the 2e2p reduction potential is discussed. Further improvements can be achieved by tuning the range-split parameter based on the linear relationship between the Hammett constant of phenyl substituents and the optimal ω value that most accurately reproduces the experiments. The suggested protocol can accurately predict the 2e2p reduction potential of five ethyl 2-phenylazocarboxylate derivatives. Based on these findings, 22 additional candidates are suggested to enlarge the electrochemical window and to increase the selectivity of 2e2p reactions. This study contributes to the development of a theoretical approach to accurately estimate the 2e2p reduction potential of azo groups.
Collapse
Affiliation(s)
- Serin Lee
- Incheon National University and Research Institute of Basic Sciences, Incheon National University, Incheon 22012, South Korea
| | - Giseung Lee
- Incheon National University and Research Institute of Basic Sciences, Incheon National University, Incheon 22012, South Korea
| | - Sanggil Park
- Incheon National University and Research Institute of Basic Sciences, Incheon National University, Incheon 22012, South Korea
| | - Daniel Yim
- Incheon National University and Research Institute of Basic Sciences, Incheon National University, Incheon 22012, South Korea
| | - Taeeun Yim
- Incheon National University and Research Institute of Basic Sciences, Incheon National University, Incheon 22012, South Korea
| | - Jinho Kim
- Incheon National University and Research Institute of Basic Sciences, Incheon National University, Incheon 22012, South Korea
| | - Hyungjun Kim
- Incheon National University and Research Institute of Basic Sciences, Incheon National University, Incheon 22012, South Korea
| |
Collapse
|
5
|
Guo X, Sun X, Zhao Y, Jiang M. Switchable Synthesis of Sulfoxides, Sulfones and Thiosulfonates through Selectfluor-Promoted Oxidation with H2O as O-Source. SYNTHESIS-STUTTGART 2022. [DOI: 10.1055/a-1701-6700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
AbstractA practical and efficient protocol for the switchable synthesis of sulfoxides, sulfones, and thiosulfonates via Selectfluor-mediated oxidation of sulfides and thiols, respectively, at ambient temperature has been developed. All these organosulfur compounds can be prepared with nearly quantitative yields by applying eco-friendly H2O as O-source. The formation of sulfoxides and thiosulfonates takes only a few minutes (3–20 min). As suggested by the control experiments, the oxidation procedure might proceed through the fluorination of sulfide, nucleophilic addition with H2O, and elimination of hydrogen fluoride.
Collapse
|
6
|
Sun S, Li J, Pan L, Liu H, Guo Y, Gao Z, Bi X. Controllable synthesis of disulfides and thiosulfonates from sodium sulfinates mediated by hydroiodic acid using ethanol and H 2O as solvents. Org Biomol Chem 2022; 20:8885-8892. [DOI: 10.1039/d2ob01778d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
A controllable and rapid synthesis of disulfides and thiosulfonates from sodium sulfinates mediated by hydroiodic acid is presented for the first time. In these reactions, ethanol and H2O were employed as solvents to generate different products.
Collapse
Affiliation(s)
- Shengnan Sun
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, PR China
| | - Junchen Li
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, PR China
| | - Li Pan
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, PR China
| | - Haibo Liu
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, PR China
| | - Yongbiao Guo
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, PR China
| | - Zhenhua Gao
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, PR China
| | - Xiaojing Bi
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, PR China
| |
Collapse
|
7
|
Das AK, Nandy S, Bhar S. Cu(OAc)2 catalysed aerobic oxidation of aldehydes to nitriles under ligand-free conditions. RSC Adv 2022; 12:4605-4614. [PMID: 35425513 PMCID: PMC8981401 DOI: 10.1039/d1ra07701e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 11/23/2021] [Indexed: 11/21/2022] Open
Abstract
An economically efficient ligand-free oxidative conversion of aldehydes to nitriles has been achieved using Cu(OAc)2 and NH4OAc as inexpensive materials of low toxicity in the presence of aerial oxygen as an eco-friendly oxidant.
Collapse
Affiliation(s)
- Asit Kumar Das
- Department of Chemistry, Krishnath College, Berhampore, Murshidabad-742101, India
| | - Sneha Nandy
- Department of Chemistry, Organic Chemistry Section, Jadavpur University, Kolkata-700032, India
| | - Sanjay Bhar
- Department of Chemistry, Organic Chemistry Section, Jadavpur University, Kolkata-700032, India
| |
Collapse
|
8
|
Yu S, Chen Z, Chen Q, Lin S, He J, Tao G, Wang Z. Research Progress in Synthesis and Application of Thiosulfonates. CHINESE J ORG CHEM 2022. [DOI: 10.6023/cjoc202203036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
9
|
Zhao J, Zhu J, Shen J, Zhang Y, Li W. Photocatalyzed Oxidative Cross-Coupling Reaction to Access Symmetrical/Unsymmetrical Thiosulfonates. CHINESE J ORG CHEM 2022. [DOI: 10.6023/cjoc202201046] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2023]
|
10
|
Ji YZ, Zhang C, Wang JH, Li HJ, Wu YC. Direct conversion of sulfinamides to thiosulfonates without the use of additional redox agents under metal-free conditions. Org Biomol Chem 2021; 19:9291-9298. [PMID: 34632475 DOI: 10.1039/d1ob01714d] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Direct conversion of sulfinamides to thiosulfonates is described. Without the use of additional redox agents, the reaction proceeds smoothly in the presence of TFA under metal-free conditions. This protocol possesses many advantages such as odourless and stable starting materials, broad substrate scope, selective synthesis, and mild reaction conditions.
Collapse
Affiliation(s)
- Yuan-Zhao Ji
- Weihai Marine Organism & Medical Technology Research Institute, Harbin Institute of Technology, Weihai 264209, P. R. China.
| | - Chi Zhang
- Weihai Marine Organism & Medical Technology Research Institute, Harbin Institute of Technology, Weihai 264209, P. R. China.
| | - Jun-Hu Wang
- Weihai Marine Organism & Medical Technology Research Institute, Harbin Institute of Technology, Weihai 264209, P. R. China.
| | - Hui-Jing Li
- Weihai Marine Organism & Medical Technology Research Institute, Harbin Institute of Technology, Weihai 264209, P. R. China. .,Weihai Huiankang Biotechnology Co., Ltd, Weihai 264200, P. R. China
| | - Yan-Chao Wu
- Weihai Marine Organism & Medical Technology Research Institute, Harbin Institute of Technology, Weihai 264209, P. R. China.
| |
Collapse
|
11
|
Kalaramna P, Goswami A. Temperature‐Controlled Chemoselective Synthesis of Thiosulfonates and Thiocyanates: Novel Reactivity of KXCN (X=S, Se) towards Organosulfonyl Chlorides. European J Org Chem 2021. [DOI: 10.1002/ejoc.202101031] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Pratibha Kalaramna
- Department of Chemistry, SS Bhatnagar Building, Main Campus Indian Institute of Technology Ropar Rupnagar Punjab 140001 India
| | - Avijit Goswami
- Department of Chemistry, SS Bhatnagar Building, Main Campus Indian Institute of Technology Ropar Rupnagar Punjab 140001 India
| |
Collapse
|
12
|
Li X, Liao W, Huang B, Zhang Y, Wang J. A metal-free approach for the synthesis of thiosulfonates from sulfonyl hydrazides. JOURNAL OF CHEMICAL RESEARCH 2021. [DOI: 10.1177/17475198211014444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Without any metal catalyst, an efficient transformation of a variety of sulfonyl hydrazides into the corresponding thiosulfonates mediated by NBS/DABCO under air is developed. The method utilizes mild reaction conditions, affords moderate to good yields of product, and tolerates a broad substrate scope. A plausible mechanism is proposed for the decomposition of the sulfonyl hydrazides and the construction of S(O2)–S bonds to form thiosulfonates.
Collapse
Affiliation(s)
- Xue Li
- Drug Research Center, Traditional Chinese Medicine Institute of Jiangxi, Nanchang, P.R. China
| | - WeiBo Liao
- Drug Research Center, Traditional Chinese Medicine Institute of Jiangxi, Nanchang, P.R. China
| | - Bin Huang
- Drug Research Center, Traditional Chinese Medicine Institute of Jiangxi, Nanchang, P.R. China
| | - YuanYuan Zhang
- Drug Research Center, Traditional Chinese Medicine Institute of Jiangxi, Nanchang, P.R. China
| | - JiangWei Wang
- Drug Research Center, Traditional Chinese Medicine Institute of Jiangxi, Nanchang, P.R. China
| |
Collapse
|
13
|
Ding C, Zhang G, Fan Q, Zhao Y, Wang H. Dual Roles of Rongalite: Reductive Coupling Reaction to Construct Thiosulfonates Using Sulfonyl Hydrazides. Synlett 2020. [DOI: 10.1055/s-0040-1707310] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
AbstractA tunable and practical transformation of structurally diverse sulfonyl hydrazides into thiosulfonates in the presence of Rongalite (NaHSO2·CH2O) was developed. Transition-metal-free conditions, operational simplicity, and readily available reagents are the striking features of this protocol. It is the first example for the synthesis of thiosulfonates using sulfonyl hydrazides with the assistance of reductant. Additionally, the mechanistic studies revealed that this transformation probably undergoes via a reducing–coupling pathway.
Collapse
Affiliation(s)
- Chengrong Ding
- College of Chemical Engineering, Zhejiang University of Technology
| | - Guofu Zhang
- College of Chemical Engineering, Zhejiang University of Technology
| | - Qiankun Fan
- College of Chemical Engineering, Zhejiang University of Technology
| | - Yiyong Zhao
- Zhejiang Ecological Environment Low Carbon Development Center
| | - Huimin Wang
- College of Chemical Engineering, Zhejiang University of Technology
| |
Collapse
|