1
|
Guo Y, Lin G, Zhang M, Xu J, Song Q. Photo-induced decarboxylative C-S bond formation to access sterically hindered unsymmetric S-alkyl thiosulfonates and SS-alkyl thiosulfonates. Nat Commun 2024; 15:7313. [PMID: 39181875 PMCID: PMC11344762 DOI: 10.1038/s41467-024-51334-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 08/05/2024] [Indexed: 08/27/2024] Open
Abstract
Due to the high reactivity and versatility of benzenesulfonothioates, significant advancements have been made in constructing C-S bonds. However, there are certain limitations in the synthesis of S-thiosulfonates and SS-thiosulfonates, especially when dealing with substantial steric hindrance, which poses a significant challenge. Herein, we present an innovative approach for assembling unsymmetric S-thiosulfonates and unsymmetric SS-thiosulfonates through the integration of dual copper/photoredox catalysis. Moreover, we also realized the one-pot strategy by directly using carboxylic acids as raw materials by in-situ activation of them to access S-thiosulfonates and SS-thiosulfonates without further purification and presynthesis of NHPI esters. The envisaged synthesis and utilization of these reagents are poised to pioneer an innovative pathway for fabricating a versatile spectrum of mono-, di-, and polysulfide compounds. Furthermore, they introduce a class of potent sulfenylating reagents, empowering the synthesis of intricate unsymmetrical disulfides that were previously challenging to access.
Collapse
Affiliation(s)
- Yu Guo
- Institute of Next Generation Matter Transformation, College of Material Sciences Engineering, Huaqiao University, Xiamen, 361021, Fujian, China
| | - Guotao Lin
- Institute of Next Generation Matter Transformation, College of Material Sciences Engineering, Huaqiao University, Xiamen, 361021, Fujian, China
| | - Mengjie Zhang
- Institute of Next Generation Matter Transformation, College of Material Sciences Engineering, Huaqiao University, Xiamen, 361021, Fujian, China
| | - Jian Xu
- Institute of Next Generation Matter Transformation, College of Material Sciences Engineering, Huaqiao University, Xiamen, 361021, Fujian, China.
| | - Qiuling Song
- Institute of Next Generation Matter Transformation, College of Material Sciences Engineering, Huaqiao University, Xiamen, 361021, Fujian, China.
- Key Laboratory of Molecule Synthesis and Function Discovery, Fujian Province University, College of Chemistry at Fuzhou University, Fuzhou, 350108, China.
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, 453007, Henan, China.
| |
Collapse
|
2
|
Sun Q, Xu Y, Yang L, Zheng CL, Wang G, Wang HB, Fang Z, Wang CS, Guo K. Direct C-H Sulfuration: Synthesis of Disulfides, Dithiocarbamates, Xanthates, Thiocarbamates and Thiocarbonates. Chem Asian J 2024; 19:e202400124. [PMID: 38421239 DOI: 10.1002/asia.202400124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 02/28/2024] [Accepted: 02/29/2024] [Indexed: 03/02/2024]
Abstract
In light of the important biological activities and widespread applications of organic disulfides, dithiocarbamates, xanthates, thiocarbamates and thiocarbonates, the continual persuit of efficient methods for their synthesis remains crucial. Traditionally, the preparation of such compounds heavily relied on intricate multi-step syntheses and the use of highly prefunctionalized starting materials. Over the past two decades, the direct sulfuration of C-H bonds has evolved into a straightforward, atom- and step-economical method for the preparation of organosulfur compounds. This review aims to provide an up-to-date discussion on direct C-H disulfuration, dithiocarbamation, xanthylation, thiocarbamation and thiocarbonation, with a special focus on describing scopes and mechanistic aspects. Moreover, the synthetic limitations and applications of some of these methodologies, along with the key unsolved challenges to be addressed in the future are also discussed. The majority of examples covered in this review are accomplished via metal-free, photochemical or electrochemical approaches, which are in alignment with the overraching objectives of green and sustainable chemistry. This comprehensive review aims to consolidate recent advancements, providing valuable insights into the dynamic landscape of efficient and sustainable synthetic strategies for these crucial classes of organosulfur compounds.
Collapse
Affiliation(s)
- Qiao Sun
- School of Food Science and Light Industry, Nanjing Tech University, 30 Puzhu Rd S., Nanjing, 211816, PR China
| | - Yuan Xu
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore, 637371, Singapore
| | - Liu Yang
- School of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 Puzhu Rd S., Nanjing, 211816, PR China
| | - Chun-Ling Zheng
- School of Food Science and Light Industry, Nanjing Tech University, 30 Puzhu Rd S., Nanjing, 211816, PR China
| | - Guowei Wang
- School of Food Science and Light Industry, Nanjing Tech University, 30 Puzhu Rd S., Nanjing, 211816, PR China
| | - Hai-Bo Wang
- School of Chemistry and Molecular Engineering, Nanjing Tech University, 30 Puzhu Rd S., Nanjing, 211816, PR China
| | - Zheng Fang
- School of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 Puzhu Rd S., Nanjing, 211816, PR China
| | - Chang-Sheng Wang
- School of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 Puzhu Rd S., Nanjing, 211816, PR China
| | - Kai Guo
- School of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 Puzhu Rd S., Nanjing, 211816, PR China
| |
Collapse
|
3
|
Liu Y, Gao W, Yuan S, Ni M, Hao T, Zeng C, Xu X, Fu Y, Peng Y, Ding Q. One-pot synthesis of 11-sulfenyl dibenzodiazepines via tandem sulfenylation/cyclization of o-isocyanodiaryl amines and diaryl disulfides. Org Biomol Chem 2023; 21:4257-4263. [PMID: 37139575 DOI: 10.1039/d3ob00220a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
A one-pot sulfenylation/cyclization of o-isocyanodiaryl amines has been described for the preparation of 11-sulfenyl dibenzodiazepines. This AgI-catalyzed reaction covers an unexplored tandem process to give seven-membered N-heterocycles. This transformation shows a broad range of substrate scope, simple operation, and moderate to good yields under aerobic conditions. Diphenyl diselenide can also be produced in an acceptable yield.
Collapse
Affiliation(s)
- Yi Liu
- National Engineering Research Center for Carbohydrate Synthesis, Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, Key Laboratory for Green Chemistry of Jiangxi Province, Jiangxi Normal University, Nanchang 330022, Jiangxi, China.
| | - Wei Gao
- Jiangxi Academy of Forestry, Nanchang 330013, Jiangxi, China.
| | - Sitian Yuan
- National Engineering Research Center for Carbohydrate Synthesis, Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, Key Laboratory for Green Chemistry of Jiangxi Province, Jiangxi Normal University, Nanchang 330022, Jiangxi, China.
| | - Mengjia Ni
- National Engineering Research Center for Carbohydrate Synthesis, Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, Key Laboratory for Green Chemistry of Jiangxi Province, Jiangxi Normal University, Nanchang 330022, Jiangxi, China.
| | - Tianxin Hao
- National Engineering Research Center for Carbohydrate Synthesis, Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, Key Laboratory for Green Chemistry of Jiangxi Province, Jiangxi Normal University, Nanchang 330022, Jiangxi, China.
| | - Cuiying Zeng
- National Engineering Research Center for Carbohydrate Synthesis, Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, Key Laboratory for Green Chemistry of Jiangxi Province, Jiangxi Normal University, Nanchang 330022, Jiangxi, China.
| | - Xinyi Xu
- National Engineering Research Center for Carbohydrate Synthesis, Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, Key Laboratory for Green Chemistry of Jiangxi Province, Jiangxi Normal University, Nanchang 330022, Jiangxi, China.
| | - Yang Fu
- National Engineering Research Center for Carbohydrate Synthesis, Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, Key Laboratory for Green Chemistry of Jiangxi Province, Jiangxi Normal University, Nanchang 330022, Jiangxi, China.
| | - Yiyuan Peng
- National Engineering Research Center for Carbohydrate Synthesis, Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, Key Laboratory for Green Chemistry of Jiangxi Province, Jiangxi Normal University, Nanchang 330022, Jiangxi, China.
| | - Qiuping Ding
- National Engineering Research Center for Carbohydrate Synthesis, Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, Key Laboratory for Green Chemistry of Jiangxi Province, Jiangxi Normal University, Nanchang 330022, Jiangxi, China.
| |
Collapse
|
4
|
Hu G, Wang C, Zhao F, Liu Y, Liu J, Zhao B. Copper‐Catalyzed Thiolation of Terminal Alkynes with
N
‐Thiosuccinimides to Access Alkynyl Sulfides. ChemistrySelect 2022. [DOI: 10.1002/slct.202104380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Guo‐Qin Hu
- School of Chemical Engineering Zhengzhou University Zhengzhou 450001 China
| | - Cai Wang
- School of Chemical Engineering Zhengzhou University Zhengzhou 450001 China
| | - Fan Zhao
- School of Chemical Engineering Zhengzhou University Zhengzhou 450001 China
| | - Yao‐Wei Liu
- School of Chemical Engineering Zhengzhou University Zhengzhou 450001 China
| | - Jing‐Hui Liu
- School of Chemical Engineering Zhengzhou University Zhengzhou 450001 China
| | - Bin Zhao
- School of Chemical Engineering Zhengzhou University Zhengzhou 450001 China
| |
Collapse
|
5
|
Zhao J, Zhu J, Shen J, Zhang Y, Li W. Photocatalyzed Oxidative Cross-Coupling Reaction to Access Symmetrical/Unsymmetrical Thiosulfonates. CHINESE J ORG CHEM 2022. [DOI: 10.6023/cjoc202201046] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2023]
|
6
|
Aneeja T, Neetha M, Afsina CMA, Anilkumar G. Progress and prospects in copper-catalyzed C-H functionalization. RSC Adv 2020; 10:34429-34458. [PMID: 35514395 PMCID: PMC9056871 DOI: 10.1039/d0ra06518h] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 09/02/2020] [Indexed: 01/21/2023] Open
Abstract
Copper-catalyzed C-H functionalization is becoming a significant area in organic chemistry. Copper is now widely used as a catalyst in organic synthesis as it is inexpensive and not very toxic. Functionalization of C-H bonds to construct wide varieties of organic compounds has received much attention in recent times. This review focuses on the recent advances in Cu-catalyzed C-H functionalization and covers literature from 2018-2020.
Collapse
Affiliation(s)
- Thaipparambil Aneeja
- School of Chemical Sciences, Mahatma Gandhi University Priyadarsini Hills P.O. Kottayam Kerala 686560 India (+91) 481-2731036
| | - Mohan Neetha
- School of Chemical Sciences, Mahatma Gandhi University Priyadarsini Hills P.O. Kottayam Kerala 686560 India (+91) 481-2731036
| | - C M A Afsina
- School of Chemical Sciences, Mahatma Gandhi University Priyadarsini Hills P.O. Kottayam Kerala 686560 India (+91) 481-2731036
| | - Gopinathan Anilkumar
- School of Chemical Sciences, Mahatma Gandhi University Priyadarsini Hills P.O. Kottayam Kerala 686560 India (+91) 481-2731036
- Advanced Molecular Materials Research Centre (AMMRC), Mahatma Gandhi University Priyadarsini Hills P.O. Kottayam Kerala 686560 India
- Institute for Integrated Programmes and Research in Basic Sciences (IIRBS), Mahatma Gandhi University Priyadarsini Hills P.O. Kottayam Kerala 686560 India
| |
Collapse
|