1
|
Das S, Choudhury B, Maiti B, Chanda K. Ionic-liquid-supported copper-promoted synthesis of 3,5-disubstituted-1,2,4-triazoles. Org Biomol Chem 2025; 23:2000-2009. [PMID: 39841514 DOI: 10.1039/d4ob01625d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2025]
Abstract
The synthesis of triazoles plays an important role in drug discovery research. 1,2,4-triazoles are considered significant scaffolds among several bioactive heterocycles due to their extensive use in the pharmaceutical and agrochemical sectors. Consequently, the importance of the synthesis of 1,2,4-triazoles via a sustainable method has increased. Herein, we have utilized an ionic-liquid-supported copper(II) catalyst for the synthesis of 1,2,4-triazoles from benzonitrile derivatives and primary amines under neat conditions both in thermal and microwave heating approaches. Our approach furnished excellent yields of the target moieties (7a-r) in a comparatively short reaction time. This synthetic protocol provides the advantage of synthesizing a couple of C-N bonds and an N-N bond simultaneously from easily accessible amines and nitriles in a simple pathway via a sustainable approach.
Collapse
Affiliation(s)
- Soumyadip Das
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore 632014, India
| | - Badruzzaman Choudhury
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore 632014, India
| | - Barnali Maiti
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore 632014, India
| | - Kaushik Chanda
- Department of Chemistry, Rabindranath Tagore University, Hojai 782435, Assam, India.
| |
Collapse
|
2
|
Golestanifar L, Sardarian AR. Introduction and characterization of a novel Cu(ii)-based quaternary deep eutectic solvent and its application in the efficient synthesis of triazoles and tetrazoles under mild conditions as an inexpensive, reusable, benign, and dual solvent/catalyst medium. RSC Adv 2025; 15:3389-3405. [PMID: 39902108 PMCID: PMC11788717 DOI: 10.1039/d4ra08090d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Accepted: 01/17/2025] [Indexed: 02/05/2025] Open
Abstract
Deep eutectic solvents consist of hydrogen bond donor and acceptor components. They are a new type of ionic liquids, and they have attracted the attention of many chemists in recent years. In this work, a quaternary deep eutectic solvent (QDES) was prepared using choline chloride, glycerol, l-arginine, and copper acetate. Its physicochemical properties were determined by Fourier transform infrared spectroscopy (FT-IR), thermal analysis (TGA), differential scanning calorimetry (DSC), hydrogen potential (pH), cyclic voltammetry (CV), viscosity, density, refractive index, ionic conductivity and spectrophotometer ultraviolet-visible (UV-Vis). Further, as a novel benign solvent/catalyst for the synthesis of 1,4-disubstituted-1,2,3-triazole, 4-substituted-1H-1,2,3-triazole, and 5-substituted-1H-tetrazole derivatives were used in a click reaction strategy. The special features of this method include mild conditions, a non-toxic environment, short reaction time, easy operation, biodegradability, deep eutectic solvent/catalyst recovery, access to cheaper raw materials, and environmental compatibility.
Collapse
Affiliation(s)
- Laleh Golestanifar
- Chemistry Department, College of Science, Shiraz University Shiraz 71946-84795 Iran +98-36460788 +98-71-36137107
| | - Ali Reza Sardarian
- Chemistry Department, College of Science, Shiraz University Shiraz 71946-84795 Iran +98-36460788 +98-71-36137107
| |
Collapse
|
3
|
Swami S, Sharma N, Sharma G, Shrivastava R. Recent advances in microwave-assisted synthesis of triazoles and their derivatives: a green approach toward sustainable development methods. RSC Adv 2025; 15:2361-2415. [PMID: 39867335 PMCID: PMC11758809 DOI: 10.1039/d4ra06886f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 01/06/2025] [Indexed: 01/28/2025] Open
Abstract
Triazole, a nitrogen-containing five-membered heterocycle with two isomeric forms, 1,2,3-triazole and 1,2,4-triazole, has proven to be a valuable component in the pharmaceutical domain. Owing to its widespread utility in drug development, pharmaceutical and medicinal chemistry, several synthetic methods have been explored, such as different catalytic systems, solvents, and heating methodologies in recent years. However, some methods were associated with several limitations, such as harsh reaction conditions, high temperatures, low atom economy, and long reaction times. Conversely, the ongoing demand from the chemical industry has led to increased attention on overcoming these limitations and developing sustainable laboratory methods. In recent years, the microwave heating method in organic synthesis has evolved as a new, environmentally friendly approach with benefits such as atom economy, reduced use of hazardous chemicals, safer chemical design, few derivatives and enhanced energy efficiency. This review summarizes recent progress in microwave-assisted synthesis of triazoles (1,2,3-triazole and 1,2,4-triazole), with a comparative analysis between conventional methods and microwave-assisted methods in terms of reaction time, yield, green synthesis, sustainability and other relevant factors.
Collapse
Affiliation(s)
- Suman Swami
- Department of Chemistry, Chandigarh University NH-05, Ludhiana-Chandigarh State Hwy Mohali Punjab 140413 India
| | - Neelam Sharma
- Department of Chemistry, Manipal University Jaipur VPO-Dehmi-Kalan, Off Jaipur Ajmer Express Way Jaipur Rajasthan 303007 India
| | - Garvit Sharma
- Department of Computational Science, Central University of Punjab Bathinda Punjab 151401 India
| | - Rahul Shrivastava
- Department of Chemistry, Manipal University Jaipur VPO-Dehmi-Kalan, Off Jaipur Ajmer Express Way Jaipur Rajasthan 303007 India
| |
Collapse
|
4
|
Dasmahapatra U, Maiti B, Chanda K. A microwave assisted tandem synthesis of quinazolinones using ionic liquid supported copper(II) catalyst with mechanistic insights. Org Biomol Chem 2024; 22:8459-8471. [PMID: 39320933 DOI: 10.1039/d4ob01261e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/26/2024]
Abstract
Quinazolinone is a preferred structural motif with notable pharmacological activity that is present in a wide range of naturally occurring compounds. A microwave assisted tandem cyclooxidative method has been developed to afford quinazolinones via a recyclable ionic liquid supported copper catalyst. This sustainable method exhibits operational simplicity through a rapid, clean, and energy-efficient route and a variety of 2-substituted quinazolinones are obtained in excellent yields. In addition, this innovative approach enables us to develop a library of nitriles in an environment-friendly synthetic protocol. Moreover, the catalyst can be recycled and reused up to three consecutive cycles without any significant loss of catalytic activity. Further organic transformation of the synthesized quinazolinones was carried out to afford reported as well as novel bioactive heterocyclic compounds.
Collapse
Affiliation(s)
- Upala Dasmahapatra
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore- 632014, India
| | - Barnali Maiti
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore- 632014, India
| | - Kaushik Chanda
- Department of Chemistry, Rabindranath Tagore University, Hojai, Assam-782435, India.
| |
Collapse
|
5
|
Hosseininezhad S, Ramazani A. Recent advances in the application of alkynes in multicomponent reactions. RSC Adv 2024; 14:278-352. [PMID: 38173570 PMCID: PMC10759206 DOI: 10.1039/d3ra07670a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 12/02/2023] [Indexed: 01/05/2024] Open
Abstract
Alkynes have two active positions to carry out chemical reactions: C[triple bond, length as m-dash]C and C-H. These two positions are involved and activated in different reactions using different reagents. In this study, we investigated the reactions of alkynes that are involved in multi-component reactions through the C-C and C-H positions and examined the progress and gaps of each reaction by carefully studying the mechanism of the reactions. Firstly, we investigated and analyzed the reactions involving the C[triple bond, length as m-dash]C position of alkynes, including the reactions between derivatives of alkynes with RN3, sulfur compounds (RSO2R', DMSO, S8, DABCO(SO2)2 and DABSO), barbituric acids, aldehydes and amines, COOH, α-diazoesters or ketones, and isocyanides. Then, we examined and analyzed the important reactions involving the C-H position of alkynes and the progress and gaps in these reactions, including the reaction between alkyne derivatives with amines and aldehydes for the synthesis of propargylamines, the reaction between alkynes with CO2 and the reaction between alkynes with CO.
Collapse
Affiliation(s)
- Seyedmohammad Hosseininezhad
- The Organic Chemistry Research Laboratory (OCRL), Department of Chemistry, Faculty of Science, University of Zanjan Zanjan 45371-38791 Iran
| | - Ali Ramazani
- The Organic Chemistry Research Laboratory (OCRL), Department of Chemistry, Faculty of Science, University of Zanjan Zanjan 45371-38791 Iran
- The Convergent Sciences & Technologies Laboratory (CSTL), Research Institute of Modern Biological Techniques (RIMBT), University of Zanjan Zanjan 45371-38791 Iran
| |
Collapse
|
6
|
Guo H, Zhou B, Chang J, Chang W, Feng J, Zhang Z. Multicomponent cyclization with azides to synthesize N-heterocycles. Org Biomol Chem 2023; 21:8054-8074. [PMID: 37801029 DOI: 10.1039/d3ob01115a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/07/2023]
Abstract
Heterocyclic compounds, both naturally derived and synthetically produced, constitute a wide variety of biologically active and industrially important compounds. The synthesis and application of heterocyclic compounds have garnered significant attention and experienced rapid growth in recent decades. Organic azides, due to their unique properties and distinctive reactivity, have become a convenient chemical tool for achieving a wide range of heterocycles such as triazoles and tetrazoles. Importantly, the field of multicomponent reaction (MCR) chemistry provides a convergent approach to access various N-heterocyclic scaffolds, offering novelty, diversity, and complexity. However, the exploration of MCR pathways to N-heterocyclic compounds remains incomplete. Here, we review the use of multicomponent reactions for the preparation of N-heterocycles. A wide range of reactions based on azides for the synthesis of various types of N-heterocyclic systems have been developed.
Collapse
Affiliation(s)
- Hong Guo
- College of Science, China Agricultural University, Beijing 100193, China.
| | - Bei Zhou
- College of Science, China Agricultural University, Beijing 100193, China.
| | - Jingjing Chang
- College of Science, China Agricultural University, Beijing 100193, China.
| | - Wenxu Chang
- College of Science, China Agricultural University, Beijing 100193, China.
| | - Jiyao Feng
- College of Science, China Agricultural University, Beijing 100193, China.
| | - Zhenhua Zhang
- College of Science, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
7
|
Jena S, Chanda K. Copper Catalyzed Synthesis of Heterocyclic Molecules via C-N and C-O Bond Formation under Microwaves: A Mini-Review. ACS OMEGA 2023; 8:23240-23256. [PMID: 37426233 PMCID: PMC10324070 DOI: 10.1021/acsomega.3c02041] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 05/22/2023] [Indexed: 07/11/2023]
Abstract
Heterocyclic moieties play a significant role in the field of drug discovery. C-N and C-O bond formation reactions are the primary synthetic sequence for the generation of heterocyclic molecules. The generation of C-N and C-O bonds involves the use of mostly Pd or Cu catalysts although other transition metal catalyst's are also involved. However, in C-N and C-O bond formation reactions, several problems were faced such as catalytic systems containing costly ligands, lack of substrate scope, lots of waste generation, and high temperature conditions. So it is imperative to uncover new eco-friendly synthetic strategies. In view of enormous drawbacks, it is important to develop an alternate microwave-assisted synthesis of heterocycles via C-N and C-O bond formation, which provides a short reaction time, tolerance for functional groups, and less waste production. Numerous chemical reactions have been accelerated using microwave irradiation which provides a cleaner reaction profile, lower energy consumption, and higher yields. This review article highlights a comprehensive overview on the potential application of microwave assisted synthetic routes for the synthesis of diverse heterocycles via mechanistic pathways covering the year ranges from 2014 to 2023, along with possible biological interests.
Collapse
Affiliation(s)
| | - Kaushik Chanda
- Department
of Chemistry, School of Advanced Sciences,
Vellore Institute of Technology, Vellore, 632 014, Tamil Nadu India
| |
Collapse
|
8
|
A heterogeneous Cu-catalyst immobilized on poly(3-carboxythiophene)-modified multi-walled carbon nanotubes for click reaction. J CHEM SCI 2023. [DOI: 10.1007/s12039-023-02132-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
|
9
|
Anand A, Kumar R, Maity J, Maikhuri VK. Recent progress in the Cu-catalyzed multicomponent synthesis of 1,4-disubstituted 1,2,3-triazoles. SYNTHETIC COMMUN 2023. [DOI: 10.1080/00397911.2023.2174031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Akash Anand
- Department of Chemistry, Patna University, Patna, India;
| | - Rajneesh Kumar
- Department of Chemistry, Patna University, Patna, India;
| | - Jyotirmoy Maity
- Department of Chemistry, St. Stephen’s College, University of Delhi, Delhi, India
| | - Vipin K. Maikhuri
- Bioorganic Laboratory, Department of Chemistry, University of Delhi, Delhi, India
| |
Collapse
|
10
|
Ahmad MG, Chanda K. Ionic liquid coordinated metal-catalyzed organic transformations: A comprehensive review. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
11
|
Drelinkiewicz D, Whitby RJ. A practical flow synthesis of 1,2,3-triazoles. RSC Adv 2022; 12:28910-28915. [PMID: 36320728 PMCID: PMC9551675 DOI: 10.1039/d2ra04727f] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 10/01/2022] [Indexed: 11/07/2022] Open
Abstract
A robust and versatile protocol for synthesis of 1-monosubstituted and 1,4-disubstituted 1H-1,2,3-triazoles was established under continuous flow conditions using copper-on-charcoal as a heterogeneous catalyst. This methodology allowed for the synthesis of a diverse set of substituted 1,2,3-triazoles with good functional group tolerance and high yields. 2-Ynoic acids were also used as small-chain alkyne donors in a decarboxylation/cycloaddition cascade, allowing gaseous reagents to be bypassed, delivering desired triazoles in high yields. The developed methodology was used to synthesize an antiepileptic agent, rufinamide, which was obtained in 96% isolated yield. Copper-on-charcoal is an excellent heterogeneous catalyst for the alkyne–azide cycloaddition reaction performed under continuous flow conditions. 2-Ynoic acids undergo decarboxylation/cycloaddition cascade giving triazoles bearing small alkyl chains.![]()
Collapse
Affiliation(s)
- Dawid Drelinkiewicz
- School of Chemistry, Faculty of Engineering and Physical Sciences, The University of SouthamptonSouthamptonUK
| | - Richard J. Whitby
- School of Chemistry, Faculty of Engineering and Physical Sciences, The University of SouthamptonSouthamptonUK
| |
Collapse
|
12
|
Jaiswal S, Devi M, Sharma N, Rathi K, Dwivedi J, Sharma S. Emerging Approaches for Synthesis of 1,2,3-Triazole Derivatives. A Review. ORG PREP PROCED INT 2022. [DOI: 10.1080/00304948.2022.2069456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- Shivangi Jaiswal
- Department of Chemistry, Banasthali Vidyapith, Banasthali, India
| | - Meenu Devi
- Department of Chemistry, Banasthali Vidyapith, Banasthali, India
| | - Neha Sharma
- Department of Chemistry, Banasthali Vidyapith, Banasthali, India
| | - Komal Rathi
- Department of Chemistry, Banasthali Vidyapith, Banasthali, India
| | - Jaya Dwivedi
- Department of Chemistry, Banasthali Vidyapith, Banasthali, India
| | - Swapnil Sharma
- Department of Pharmacy, Banasthali Vidyapith, Banasthali, India
| |
Collapse
|
13
|
Highly Active Cu(II) Diimine Catalyzed Click Reactions: A Mild Yet Fast Approach to Carbazole Substituted 1,2,3-Triazoles. Catal Letters 2022. [DOI: 10.1007/s10562-022-03971-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
14
|
Dhameliya TM, Nagar PR, Bhakhar KA, Jivani HR, Shah BJ, Patel KM, Patel VS, Soni AH, Joshi LP, Gajjar ND. Recent advancements in applications of ionic liquids in synthetic construction of heterocyclic scaffolds: A spotlight. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2021.118329] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
15
|
Novel Copper Tagged Supported Ionic Liquid Phase Catalyst for the Synthesis of 1,4‑Disubstituted 1,2,3‑Triazoles via Cu-catalyzed Azide–Alkyne Cycloaddition Reactions in Water. Catal Letters 2022. [DOI: 10.1007/s10562-021-03898-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
16
|
Jadhav CK, Nipate AS, Chate AV, Kulkarni MV, Gill CH. Microwave-Assisted Chemistry: New Synthetic Application for the Rapid Construction of 1H-Pyrazolo[1,2-b]Phthalazine-5,10-Dione Derivatives in Diisopropyl Ethyl Ammonium Acetate. Polycycl Aromat Compd 2022. [DOI: 10.1080/10406638.2021.2021252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Chetan K. Jadhav
- Department of Chemistry, Dr. Babasaheb Ambedkar, Marathwada University, Aurangabad, Maharashtra, India
| | - Amol S. Nipate
- Department of Chemistry, Dr. Babasaheb Ambedkar, Marathwada University, Aurangabad, Maharashtra, India
| | - Asha V. Chate
- Department of Chemistry, Dr. Babasaheb Ambedkar, Marathwada University, Aurangabad, Maharashtra, India
| | - Makrand V. Kulkarni
- Department of Chemistry, Dr. Babasaheb Ambedkar, Marathwada University, Aurangabad, Maharashtra, India
| | - Charansingh H. Gill
- Department of Chemistry, Dr. Babasaheb Ambedkar, Marathwada University, Aurangabad, Maharashtra, India
| |
Collapse
|
17
|
Bifunctional C2-symmetric ionic liquid-supported (S)-proline as a recyclable organocatalyst for Mannich reactions in neat condition. RESULTS IN CHEMISTRY 2021. [DOI: 10.1016/j.rechem.2021.100152] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
|
18
|
Fairoosa J, Neetha M, Anilkumar G. Recent developments and perspectives in the copper-catalyzed multicomponent synthesis of heterocycles. RSC Adv 2021; 11:3452-3469. [PMID: 35424324 PMCID: PMC8694354 DOI: 10.1039/d0ra10472h] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Accepted: 01/08/2021] [Indexed: 12/11/2022] Open
Abstract
Heterocyclic compounds have become an inevitable part of organic chemistry due to their ubiquitous presence in bioactive compounds. Copper-catalyzed multicomponent synthesis of heterocycles has developed as the most convenient and facile synthetic route towards complex heterocyclic motifs. In this review, we discuss the advancements in the field of copper-catalyzed multicomponent reactions for the preparation of heterocycles since 2018. Heterocycles are abundant in several pharmaceutical and naturally occurring compounds. Copper-catalyzed multicomponent reactions are a convenient method for easy access to heterocycles. In this review, we focus on the advancement in this field for the past two years.![]()
Collapse
Affiliation(s)
- Jaleel Fairoosa
- School of Chemical Sciences
- Mahatma Gandhi University
- Kottayam
- India
| | - Mohan Neetha
- School of Chemical Sciences
- Mahatma Gandhi University
- Kottayam
- India
| | - Gopinathan Anilkumar
- School of Chemical Sciences
- Mahatma Gandhi University
- Kottayam
- India
- Advanced Molecular Materials Research Centre (AMMRC)
| |
Collapse
|