1
|
Lou X, Lin J, Kwok CY, Lyu H. Stereoselective Unsymmetrical 1,1-Diborylation of Alkynes with a Neutral sp 2 -sp 3 Diboron Reagent. Angew Chem Int Ed Engl 2023; 62:e202312633. [PMID: 37822069 DOI: 10.1002/anie.202312633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 10/11/2023] [Accepted: 10/11/2023] [Indexed: 10/13/2023]
Abstract
The incorporation of two distinct boryl groups at the same carbon center in organic molecules has attracted growing research interest due to its potential for facilitating controlled, precise synthesis through stepwise dual carbon-boron bond transformations. Here we report a method to access unsymmetrical 1,1-diborylalkene (UDBA) stereoselectively via the reaction of readily available alkynes with a neutral sp2 -sp3 diboron reagent (NHC)BH2 -Bpin (NHC=N-heterocyclic carbene). Attributing to the chemically easily distinguishable nature of the sp2 and sp3 boryl moieties, controllable stepwise derivatization of the resultant UDBAs is realized. This process leads to various multifunctionalized olefins and organoborons, such as acylboranes, which are difficult to prepare by other methods.
Collapse
Affiliation(s)
- Xiangyu Lou
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, China
| | - Jiaxin Lin
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China
| | - Chun Yin Kwok
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, China
| | - Hairong Lyu
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, China
| |
Collapse
|
2
|
Gu JG, Wang CX, Hu GQ, Shen K, Zhang HH. K 2CO 3/18-Crown-6-Catalyzed Selective H/D Exchange of Heteroarenes with Bromide as a Removable Directing Group. Org Lett 2023; 25:3055-3059. [PMID: 37126411 DOI: 10.1021/acs.orglett.3c00883] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
The K2CO3/18-crown-6-catalyzed H/D exchange of heretoarenes in high atom % deuterium incorporation is disclosed. The use of a weak base as a catalyst leads to excellent site selectivity and broad functional group tolerance. Control experiments indicated that the use of bromide, which enhances the adjacent C-H bond reactivity, as a removable directing group is essential. Moreover, conversion of bromide to other functional groups is also performed to construct other useful deuterated compounds.
Collapse
Affiliation(s)
- Jian-Guo Gu
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, 30 Puzhu Road, Nanjing 211816, P. R. China
| | - Cai-Xia Wang
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, 30 Puzhu Road, Nanjing 211816, P. R. China
| | - Guang-Qi Hu
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, 30 Puzhu Road, Nanjing 211816, P. R. China
| | - Kang Shen
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, 30 Puzhu Road, Nanjing 211816, P. R. China
| | - Hong-Hai Zhang
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| |
Collapse
|
3
|
Tarrach X, Yang J, Soleiman-Beigi M, Díez-González S. Straightforward and Efficient Deuteration of Terminal Alkynes with Copper Catalysis. Catalysts 2023. [DOI: 10.3390/catal13040648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023] Open
Abstract
The mild and effective preparation of deuterated organic molecules is an active area of research due to their important applications. Herein, we report an air-stable and easy to access copper(I) complex as catalyst for the deuteration of mono-substituted alkynes. Reactions were carried out in technical solvents and in the presence of air, to obtain excellent deuterium incorporation in a range of functionalised alkynes.
Collapse
|
4
|
Jansen-van Vuuren RD, Jedlovčnik L, Košmrlj J, Massey TE, Derdau V. Deuterated Drugs and Biomarkers in the COVID-19 Pandemic. ACS OMEGA 2022; 7:41840-41858. [PMID: 36440130 PMCID: PMC9685803 DOI: 10.1021/acsomega.2c04160] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Accepted: 10/18/2022] [Indexed: 06/07/2023]
Abstract
Coronavirus disease 2019 (COVID-19) is a highly contagious disease caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Initially identified in Wuhan (China) in December 2019, COVID-19 rapidly spread globally, resulting in the COVID-19 pandemic. Carriers of the SARS-CoV-2 can experience symptoms ranging from mild to severe (or no symptoms whatsoever). Although vaccination provides extra immunity toward SARS-CoV-2, there has been an urgent need to develop treatments for COVID-19 to alleviate symptoms for carriers of the disease. In seeking a potential treatment, deuterated compounds have played a critical role either as therapeutic agents or as internal MS standards for studying the pharmacological properties of new drugs by quantifying the parent compounds and metabolites. We have identified >70 examples of deuterium-labeled compounds associated with treatment of COVID-19. Of these, we found 9 repurposed drugs and >20 novel drugs studied for potential therapeutic roles along with a total of 38 compounds (drugs, biomarkers, and lipids) explored as internal mass spectrometry standards. This review details the synthetic pathways and modes of action of these compounds (if known), and a brief analysis of each study.
Collapse
Affiliation(s)
- Ross D. Jansen-van Vuuren
- Faculty
of Chemistry and Chemical Technology, University
of Ljubljana, Večna pot 113, Ljubljana 1000, Slovenia
- Department
of Chemistry, Queen’s University, 90 Bader Lane, Kingston, Ontario K7L
3N6, Canada
| | - Luka Jedlovčnik
- Faculty
of Chemistry and Chemical Technology, University
of Ljubljana, Večna pot 113, Ljubljana 1000, Slovenia
| | - Janez Košmrlj
- Faculty
of Chemistry and Chemical Technology, University
of Ljubljana, Večna pot 113, Ljubljana 1000, Slovenia
| | - Thomas E. Massey
- Department
of Biomedical and Molecular Sciences, School of Medicine, Queen’s University, Botterell Hall, 18 Stuart Street, Kingston, Ontario K7L 3N6, Canada
| | - Volker Derdau
- Research
& Development, Integrated Drug Discovery, Isotope Chemistry, Sanofi-Aventis Deutschland GmbH, Industriepark Höchst G876, Frankfurt/Main 65926, Germany
| |
Collapse
|
5
|
Itoga M, Yamanishi M, Udagawa T, Kobayashi A, Maekawa K, Takemoto Y, Naka H. Iridium-catalyzed α-selective deuteration of alcohols. Chem Sci 2022; 13:8744-8751. [PMID: 35975159 PMCID: PMC9350590 DOI: 10.1039/d2sc01805e] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 06/29/2022] [Indexed: 11/23/2022] Open
Abstract
The development of chemoselective C(sp3)-H deuteration is of particular interest in synthetic chemistry. We herein report the α-selective, iridium(iii)-bipyridonate-catalyzed hydrogen(H)/deuterium(D) isotope exchange of alcohols using deuterium oxide (D2O) as the primary deuterium source. This method enables the direct, chemoselective deuteration of primary and secondary alcohols under basic or neutral conditions without being affected by coordinative functional groups such as imidazole and tetrazole. Successful substrates for deuterium labelling include the pharmaceuticals losartan potassium, rapidosept, guaifenesin, and diprophylline. The deuterated losartan potassium shows higher stability towards the metabolism by CYP2C9 than the protiated analogue. Kinetic and DFT studies indicate that the direct deuteration proceeds through dehydrogenation of alcohol to the carbonyl intermediate, conversion of [IrIII-H] to [IrIII-D] with D2O, and deuteration of the carbonyl intermediate to give the α-deuterated product.
Collapse
Affiliation(s)
- Moeko Itoga
- Graduate School of Pharmaceutical Sciences, Kyoto University Kyoto 606-8501 Japan
| | - Masako Yamanishi
- Graduate School of Pharmaceutical Sciences, Kyoto University Kyoto 606-8501 Japan
| | - Taro Udagawa
- Department of Chemistry and Biomolecular Science, Faculty of Engineering, Gifu University Yanagido 1-1 Gifu 501-1193 Japan
| | - Ayane Kobayashi
- Faculty of Pharmaceutical Sciences, Doshisha Women's College of Liberal Arts Kodo, Kyotanabe Kyoto 610-0395 Japan
| | - Keiko Maekawa
- Faculty of Pharmaceutical Sciences, Doshisha Women's College of Liberal Arts Kodo, Kyotanabe Kyoto 610-0395 Japan
| | - Yoshiji Takemoto
- Graduate School of Pharmaceutical Sciences, Kyoto University Kyoto 606-8501 Japan
| | - Hiroshi Naka
- Graduate School of Pharmaceutical Sciences, Kyoto University Kyoto 606-8501 Japan
| |
Collapse
|
6
|
Prakash G, Paul N, Oliver GA, Werz DB, Maiti D. C-H deuteration of organic compounds and potential drug candidates. Chem Soc Rev 2022; 51:3123-3163. [PMID: 35320331 DOI: 10.1039/d0cs01496f] [Citation(s) in RCA: 82] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
C-H deuteration has been intricately developed to satisfy the urgent need for site-selectively deuterated organic frameworks. Deuteration has been primarily used to study kinetic isotope effects of reactions but recently its significance in pharmaceutical chemistry has been discovered. Deuterium labelled compounds have stolen the limelight since the inception of the first FDA-approved deuterated drug, for the treatment of chorea-associated Huntington's disease, and their pharmacological importance was realised by chemists, although surprisingly very late. Various approaches were developed to carry out site-selective deuteration. However, the most common and efficient method is hydrogen isotope exchange (HIE). This review summarises deuteration methods of various organic motifs containing C(sp2)-H and C(sp3)-H bonds utilizing C-H bond functionalisation as a key step along with a variety of catalysts, and exemplifies their biological relevance.
Collapse
Affiliation(s)
- Gaurav Prakash
- Department of Chemistry, IIT Bombay, Powai, Mumbai-400076, India.
| | - Nilanjan Paul
- Department of Chemistry, IIT Bombay, Powai, Mumbai-400076, India.
| | - Gwyndaf A Oliver
- Technische Universität Braunschweig, Institute of Organic Chemistry, Hagenring 30, 38106 Braunschweig, Germany.
| | - Daniel B Werz
- Technische Universität Braunschweig, Institute of Organic Chemistry, Hagenring 30, 38106 Braunschweig, Germany.
| | - Debabrata Maiti
- Department of Chemistry, IIT Bombay, Powai, Mumbai-400076, India.
| |
Collapse
|
7
|
Kopf S, Bourriquen F, Li W, Neumann H, Junge K, Beller M. Recent Developments for the Deuterium and Tritium Labeling of Organic Molecules. Chem Rev 2022; 122:6634-6718. [PMID: 35179363 DOI: 10.1021/acs.chemrev.1c00795] [Citation(s) in RCA: 235] [Impact Index Per Article: 78.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Organic compounds labeled with hydrogen isotopes play a crucial role in numerous areas, from materials science to medicinal chemistry. Indeed, while the replacement of hydrogen by deuterium gives rise to improved absorption, distribution, metabolism, and excretion (ADME) properties in drugs and enables the preparation of internal standards for analytical mass spectrometry, the use of tritium-labeled compounds is a key technique all along drug discovery and development in the pharmaceutical industry. For these reasons, the interest in new methodologies for the isotopic enrichment of organic molecules and the extent of their applications are equally rising. In this regard, this Review intends to comprehensively discuss the new developments in this area over the last years (2017-2021). Notably, besides the fundamental hydrogen isotope exchange (HIE) reactions and the use of isotopically labeled analogues of common organic reagents, a plethora of reductive and dehalogenative deuteration techniques and other transformations with isotope incorporation are emerging and are now part of the labeling toolkit.
Collapse
Affiliation(s)
- Sara Kopf
- Leibniz-Institut für Katalyse e. V., 18059 Rostock, Germany
| | | | - Wu Li
- Leibniz-Institut für Katalyse e. V., 18059 Rostock, Germany
| | | | - Kathrin Junge
- Leibniz-Institut für Katalyse e. V., 18059 Rostock, Germany
| | | |
Collapse
|
8
|
Chan MYT, Anwar A, Lockley WJS. Practical approaches to labelling terminal alkynes with deuterium. J Labelled Comp Radiopharm 2022; 65:101-111. [PMID: 35067956 PMCID: PMC9303397 DOI: 10.1002/jlcr.3963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 01/14/2022] [Accepted: 01/17/2022] [Indexed: 11/12/2022]
Abstract
Base catalysed exchange with sodium hydroxide, calcium oxide or N,N,N,N‐tetramethylguanidine in deuterium oxide is a viable procedure for the preparation of terminally deuterated alkynes for those alkynes stable to strong base. The use of silver perchlorate as a catalyst is an alternative practical option when labelling alkynes which are sensitive to base or contain functionalities which would lead to labelling elsewhere in the molecule. Labelling with this catalyst takes place smoothly at ambient temperature in a mixture of N,N‐dimethylformamide and deuterium oxide.
Collapse
Affiliation(s)
- Melanie Y. T. Chan
- Department of Chemistry, Faculty of Engineering and Physical Sciences University of Surrey Guildford UK
| | - Arbab Anwar
- Department of Chemistry, Faculty of Engineering and Physical Sciences University of Surrey Guildford UK
| | - William J. S. Lockley
- Department of Chemistry, Faculty of Engineering and Physical Sciences University of Surrey Guildford UK
| |
Collapse
|
9
|
Sheng FF, Li EC, Bai JW, Wang CX, Hu GQ, Liu KH, Sun ZY, Shen K, Zhang HH. Silver salt enabled H/D exchange at the β-position of thiophene rings: synthesis of fully deuterated thiophene derivatives. Org Biomol Chem 2022; 20:1176-1180. [PMID: 35044395 DOI: 10.1039/d1ob02285g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We disclose a silver catalyzed H/D exchange reaction, which can introduce the deuterium atom at the β position of thiophene rings without the assistance of any coordinating groups. The advantages of this reaction include operation in open air, usage of D2O as the deuterium source, good tolerance to a range of functional groups and obtaining high atom% deuterium incorporation. In addition, this H/D exchange reaction is employed for direct deuteration of a thiophene based monomer, which is usually prepared by multistep synthesis from expensive deuterated starting materials.
Collapse
Affiliation(s)
- Fei-Fei Sheng
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM), Nanjing Tech. University (Nanjing Tech.), 30 Puzhu Road, Nanjing 211816, P. R. China.
| | - En-Ci Li
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM), Nanjing Tech. University (Nanjing Tech.), 30 Puzhu Road, Nanjing 211816, P. R. China.
| | - Jing-Wen Bai
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM), Nanjing Tech. University (Nanjing Tech.), 30 Puzhu Road, Nanjing 211816, P. R. China.
| | - Cai-Xia Wang
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM), Nanjing Tech. University (Nanjing Tech.), 30 Puzhu Road, Nanjing 211816, P. R. China.
| | - Guang-Qi Hu
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM), Nanjing Tech. University (Nanjing Tech.), 30 Puzhu Road, Nanjing 211816, P. R. China.
| | - Kai-Hui Liu
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM), Nanjing Tech. University (Nanjing Tech.), 30 Puzhu Road, Nanjing 211816, P. R. China.
| | - Zheng-Yi Sun
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM), Nanjing Tech. University (Nanjing Tech.), 30 Puzhu Road, Nanjing 211816, P. R. China.
| | - Kang Shen
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM), Nanjing Tech. University (Nanjing Tech.), 30 Puzhu Road, Nanjing 211816, P. R. China.
| | - Hong-Hai Zhang
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM), Nanjing Tech. University (Nanjing Tech.), 30 Puzhu Road, Nanjing 211816, P. R. China. .,Neutron Scattering Division & Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, USA.
| |
Collapse
|
10
|
Park K, Oka N, Sawama Y, Ikawa T, Yamada T, Sajiki H. Platinum on Carbon-Catalysed Site-Selective H-D Exchange Reaction of Allylic Alcohols Using Alkyl Amines as a Hydrogen Source. Org Chem Front 2022. [DOI: 10.1039/d2qo00177b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We developed platinum on carbon-catalysed deuteration reaction of tert-allylic alcohols using deuterium oxide as a deuterium source. Amylamine was dehydrogenated by platinum on carbon to generate an appropriate amount of...
Collapse
|