1
|
Keller JG, Petersen KV, Mizielinski K, Thiesen C, Bjergbæk L, Reguera RM, Pérez-Pertejo Y, Balaña-Fouce R, Trejo A, Masdeu C, Alonso C, Knudsen BR, Tesauro C. Gel-Free Tools for Quick and Simple Screening of Anti-Topoisomerase 1 Compounds. Pharmaceuticals (Basel) 2023; 16:ph16050657. [PMID: 37242440 DOI: 10.3390/ph16050657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 04/21/2023] [Accepted: 04/26/2023] [Indexed: 05/28/2023] Open
Abstract
With the increasing need for effective compounds against cancer or pathogen-borne diseases, the development of new tools to investigate the enzymatic activity of biomarkers is necessary. Among these biomarkers are DNA topoisomerases, which are key enzymes that modify DNA and regulate DNA topology during cellular processes. Over the years, libraries of natural and synthetic small-molecule compounds have been extensively investigated as potential anti-cancer, anti-bacterial, or anti-parasitic drugs targeting topoisomerases. However, the current tools for measuring the potential inhibition of topoisomerase activity are time consuming and not easily adaptable outside specialized laboratories. Here, we present rolling circle amplification-based methods that provide fast and easy readouts for screening of compounds against type 1 topoisomerases. Specific assays for the investigation of the potential inhibition of eukaryotic, viral, or bacterial type 1 topoisomerase activity were developed, using human topoisomerase 1, Leishmania donovani topoisomerase 1, monkeypox virus topoisomerase 1, and Mycobacterium smegmatis topoisomerase 1 as model enzymes. The presented tools proved to be sensitive and directly quantitative, paving the way for new diagnostic and drug screening protocols in research and clinical settings.
Collapse
Affiliation(s)
| | | | | | - Celine Thiesen
- Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus C, Denmark
| | - Lotte Bjergbæk
- Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus C, Denmark
| | - Rosa M Reguera
- Department of Biomedical Sciences, Faculty of Veterinary Medicine, University of León, 24071 León, Spain
| | - Yolanda Pérez-Pertejo
- Department of Biomedical Sciences, Faculty of Veterinary Medicine, University of León, 24071 León, Spain
| | - Rafael Balaña-Fouce
- Department of Biomedical Sciences, Faculty of Veterinary Medicine, University of León, 24071 León, Spain
| | - Angela Trejo
- Department of Organic Chemistry, Faculty of Pharmacy, University of Basque Country (UPV/EHU), 01006 Vitoria-Gasteiz, Spain
| | - Carme Masdeu
- Department of Organic Chemistry, Faculty of Pharmacy, University of Basque Country (UPV/EHU), 01006 Vitoria-Gasteiz, Spain
| | - Concepcion Alonso
- Department of Organic Chemistry, Faculty of Pharmacy, University of Basque Country (UPV/EHU), 01006 Vitoria-Gasteiz, Spain
| | - Birgitta R Knudsen
- VPCIR Biosciences ApS, 8000 Aarhus C, Denmark
- Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus C, Denmark
| | | |
Collapse
|
2
|
Gharpure SJ, Hande PE, Pandey SK, Samala G. TMSOTf-Mediated Formal [4 + 2] Cycloaddition-Retro-aza-Michael Cascade of Vinylogous Carbamates for the Synthesis of Highly Fluorescent Pyridocarbazoles. J Org Chem 2021; 86:16652-16665. [PMID: 34766500 DOI: 10.1021/acs.joc.1c01927] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Trimethylsilyl trifluoromethanesulfonate mediated dimerization reaction of vinylogous carbamates of carbazoles gave highly fluorescent pyridocarbazoles through a Povarov-type formal [4 + 2] cycloaddition-retro-aza-Michael cascade. The developed strategy was used to access indolo pyridocarbazole and quinolizinocarbazolone in an expeditious manner. Various coupling reactions were successfully performed on synthesized pyridocarbazoles to study the effect of electronics of substitution on photophysical properties. Synthesized carbazoles possess excellent photophysical properties with high quantum yields (ΦF). Fluorescent carbazole dicarboxylic acid showed potential as a pH probe to give a linear response to pH over a very wide range (7.0-3.0) reflecting high efficiency.
Collapse
Affiliation(s)
- Santosh J Gharpure
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Pankaj E Hande
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Surya K Pandey
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Ganesh Samala
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| |
Collapse
|