1
|
Kim SY, Lim HN. Methyl Pyruvate Oxime as a Carbonyl Synthon: Synthesis of Ureas, Carbamates, Thiocarbamates, and Anilides. Org Lett 2024; 26:3850-3854. [PMID: 38683648 DOI: 10.1021/acs.orglett.4c01007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/01/2024]
Abstract
A new strategy for the synthesis of unsymmetrical ureas, carbamates, thiocarbamates, and anilides was developed with methyl pyruvate oxime as the carbonyl synthon. The intrinsic reactivity of the reagent enabled consecutive disubstitution involving direct amidation and one-pot deoximative substitution with various nucleophiles. The utility of the method was demonstrated with the synthesis of bioactive molecules.
Collapse
Affiliation(s)
- Seo Yeon Kim
- Department of Chemistry, Yeungnam University, 280 Daehak-Ro, Gyeongsan, Gyeongbuk 38541, Republic of Korea
| | - Hee Nam Lim
- Department of Chemistry, Yeungnam University, 280 Daehak-Ro, Gyeongsan, Gyeongbuk 38541, Republic of Korea
| |
Collapse
|
2
|
Lee SE, Kim Y, Lee YH, Lim HN. C-C Bond Cleavage-Induced C- to N-Acyl Transfer for Synthesis of Amides. Org Lett 2024; 26:3646-3651. [PMID: 38656111 DOI: 10.1021/acs.orglett.4c01154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
A new approach for the preparation of amides was developed using C-C bond cleavage that initiates C- to N-acyl transfer, employing activated ketones as acylation reagents and amine nucleophiles. The reaction was operational under the coupling reagent system that is commonly utilized for peptide bond formations. The method enables practical preparation of amides using linear and cyclic ketone substrates under mild conditions.
Collapse
Affiliation(s)
- Su Eun Lee
- Department of Chemistry, Yeungnam University, 280 Daehak-Ro, Gyeongsan, Gyeongbuk 38541, Republic of Korea
| | - Youngsoo Kim
- Department of Chemistry, Yeungnam University, 280 Daehak-Ro, Gyeongsan, Gyeongbuk 38541, Republic of Korea
| | - Yong Ho Lee
- Department of Chemistry and Center for Proteogenome Research, Korea University, Seoul 02841, Republic of Korea
| | - Hee Nam Lim
- Department of Chemistry, Yeungnam University, 280 Daehak-Ro, Gyeongsan, Gyeongbuk 38541, Republic of Korea
| |
Collapse
|
3
|
Bak JM, Song M, Shin I, Lim HN. A deconstruction-reconstruction strategy to access 1-naphthol derivatives: application to the synthesis of aristolactam scaffolds. Org Biomol Chem 2023; 21:8936-8941. [PMID: 37916683 DOI: 10.1039/d3ob01603j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2023]
Abstract
A deconstruction-reconstruction strategy for the synthesis of multisubstituted polycyclic aromatic hydrocarbons (PAHs) is delineated herein. The deconstruction step enables the synthesis of o-cyanomethylaroyl fluorides that are bifunctional substrates holding both a pro-nucleophile and an electrophile. The construction step involves a formal [4 + 2] benzannulation using o-cyanomethylaroyl fluorides and active methylenes. The utility of this synthetic method is also demonstrated by the synthesis of a tetracyclic aristolactam derivative.
Collapse
Affiliation(s)
- Jeong Min Bak
- Department of Chemistry, Yeungnam University, 280 Daehak-Ro, Gyeongsan, Gyeongbuk, 38541, Republic of Korea.
| | - Moonyeong Song
- Department of Fine Chemistry, Seoul National University of Science and Technology, 232 Gongneung-ro, Nowon-gu, Seoul 01811, Republic of Korea
| | - Inji Shin
- Department of Fine Chemistry, Seoul National University of Science and Technology, 232 Gongneung-ro, Nowon-gu, Seoul 01811, Republic of Korea
| | - Hee Nam Lim
- Department of Chemistry, Yeungnam University, 280 Daehak-Ro, Gyeongsan, Gyeongbuk, 38541, Republic of Korea.
| |
Collapse
|
4
|
Lee CY, Lee SE, Lim HN. A Strategic Synthesis of Fluoroethers via Ring-Opening Fluorinative Beckmann Fragmentation. Org Lett 2023; 25:6534-6538. [PMID: 37616502 DOI: 10.1021/acs.orglett.3c02343] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/26/2023]
Abstract
An SN1-type fluorination method for monofluoroethers is developed. The key to this reaction is fluorinative C-C bond cleavage that is driven by oxygen-assisted Beckmann fragmentation. To enable this transformation, cyclic α-aryloxyoximes derived from 3-coumaranone and 1-indanones were investigated as substrates, using N,N-diethylaminosulfur trifluoride (DAST) as a dual-role reagent of an oxime activator and fluoride donor. This method features the synthesis of an underdeveloped chemical motif with simple and mild operating conditions.
Collapse
Affiliation(s)
- Chae Yeon Lee
- Department of Chemistry, Yeungnam University, 280 Daehak-Ro, Gyeongsan, Gyeongbuk 38541, Republic of Korea
| | - Su Eun Lee
- Department of Chemistry, Yeungnam University, 280 Daehak-Ro, Gyeongsan, Gyeongbuk 38541, Republic of Korea
| | - Hee Nam Lim
- Department of Chemistry, Yeungnam University, 280 Daehak-Ro, Gyeongsan, Gyeongbuk 38541, Republic of Korea
| |
Collapse
|
5
|
Liu L, Gu YC, Zhang CP. Recent Advances in the Synthesis and Transformation of Carbamoyl Fluorides, Fluoroformates, and Their Analogues. CHEM REC 2023; 23:e202300071. [PMID: 37098875 DOI: 10.1002/tcr.202300071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 04/07/2023] [Indexed: 04/27/2023]
Abstract
Carbamoyl fluorides, fluoroformates, and their analogues are a class of important compounds and have been evidenced as versatile building blocks for the preparation of useful molecules in organic chemistry. While major achievements were made in the synthesis of carbamoyl fluorides, fluoroformates, and their analogues in the last half of 20th century, an increasing number of reports have focused on using O/S/Se=CF2 species or their equivalents as the fluorocarbonylation reagents for the direct construction of these compounds from the parent heteroatom-nucleophiles in recent years. This review mainly summarizes the advances in the synthesis and typical application of carbamoyl fluorides, fluoroformates, and their analogues by the halide exchanges and fluorocarbonylation reactions since 1980.
Collapse
Affiliation(s)
- Lei Liu
- School of Materials Science and Engineering & School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, 122 Luoshi Road, Wuhan, 430070, China
| | - Yu-Cheng Gu
- Syngenta, Jealott's Hill International Research Centre, Bracknell, Berkshire, RG426EY, UK
| | - Cheng-Pan Zhang
- School of Materials Science and Engineering & School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, 122 Luoshi Road, Wuhan, 430070, China
| |
Collapse
|
6
|
Geng Y, Gao X, Liang A, Li J, Zou D, Wu Y, Wu Y. [4+2] Cycloaddition Reactions of β-Naphtha-1-thioquinones Generated from 2-Naphthols and DAST. Org Biomol Chem 2022; 20:6750-6754. [DOI: 10.1039/d2ob01044e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An original and facile method for the generation of β-naphtha-1-thioquinone using DAST and 2-naphthol has been developed. A series of dehydro-2-naphthol-1-sluphides or naphtha-oxathiane derivatives were synthesized by in-situ Diels-Alder cycloaddition...
Collapse
|
7
|
Song JW, Lim HN. Synthesis of Carbamoyl Fluorides via a Selective Fluorinative Beckmann Fragmentation. Org Lett 2021; 23:5394-5399. [PMID: 34197129 DOI: 10.1021/acs.orglett.1c01721] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A fluorinative Beckmann fragmentation of α-oximinoamides was devised to provide synthetically useful carbamoyl fluorides. High selectivity for fragmentation over a potentially competing Beckmann rearrangement was observed. This protocol has a distinct mechanism and thus a different substrate scope compared with other synthetic methods. α-Oximinoamides derived from the readily available secondary amines, lactams, or isatins were converted into structurally diverse carbamoyl fluorides.
Collapse
Affiliation(s)
- Jin Woo Song
- Eco-Friendly New Materials Research Center, Therapeutics&Biotechnology Division, Korea Research Institute of Chemical Technology (KRICT), 141 Gajeong-ro, Yuseong-gu, Daejeon 34114, Republic of Korea.,Department of Chemistry, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Hee Nam Lim
- Department of Chemistry and Biochemistry, Yeungnam University, 280 Daehak-Ro, Gyeongsan, Gyeongbuk 38541, Republic of Korea.,Eco-Friendly New Materials Research Center, Therapeutics&Biotechnology Division, Korea Research Institute of Chemical Technology (KRICT), 141 Gajeong-ro, Yuseong-gu, Daejeon 34114, Republic of Korea
| |
Collapse
|