1
|
Ehehalt L, Beleh OM, Priest IC, Mouat JM, Olszewski AK, Ahern BN, Cruz AR, Chi BK, Castro AJ, Kang K, Wang J, Weix DJ. Cross-Electrophile Coupling: Principles, Methods, and Applications in Synthesis. Chem Rev 2024; 124:13397-13569. [PMID: 39591522 PMCID: PMC11638928 DOI: 10.1021/acs.chemrev.4c00524] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 10/11/2024] [Accepted: 10/16/2024] [Indexed: 11/28/2024]
Abstract
Cross-electrophile coupling (XEC), defined by us as the cross-coupling of two different σ-electrophiles that is driven by catalyst reduction, has seen rapid progression in recent years. As such, this review aims to summarize the field from its beginnings up until mid-2023 and to provide comprehensive coverage on synthetic methods and current state of mechanistic understanding. Chapters are split by type of bond formed, which include C(sp3)-C(sp3), C(sp2)-C(sp2), C(sp2)-C(sp3), and C(sp2)-C(sp) bond formation. Additional chapters include alkene difunctionalization, alkyne difunctionalization, and formation of carbon-heteroatom bonds. Each chapter is generally organized with an initial summary of mechanisms followed by detailed figures and notes on methodological developments and ending with application notes in synthesis. While XEC is becoming an increasingly utilized approach in synthesis, its early stage of development means that optimal catalysts, ligands, additives, and reductants are still in flux. This review has collected data on these and various other aspects of the reactions to capture the state of the field. Finally, the data collected on the papers in this review is offered as Supporting Information for readers.
Collapse
Affiliation(s)
| | | | - Isabella C. Priest
- Department of Chemistry, University of Wisconsin−Madison, Madison, Wisconsin 53706, United States
| | - Julianna M. Mouat
- Department of Chemistry, University of Wisconsin−Madison, Madison, Wisconsin 53706, United States
| | - Alyssa K. Olszewski
- Department of Chemistry, University of Wisconsin−Madison, Madison, Wisconsin 53706, United States
| | - Benjamin N. Ahern
- Department of Chemistry, University of Wisconsin−Madison, Madison, Wisconsin 53706, United States
| | - Alexandro R. Cruz
- Department of Chemistry, University of Wisconsin−Madison, Madison, Wisconsin 53706, United States
| | - Benjamin K. Chi
- Department of Chemistry, University of Wisconsin−Madison, Madison, Wisconsin 53706, United States
| | - Anthony J. Castro
- Department of Chemistry, University of Wisconsin−Madison, Madison, Wisconsin 53706, United States
| | - Kai Kang
- Department of Chemistry, University of Wisconsin−Madison, Madison, Wisconsin 53706, United States
| | - Jiang Wang
- Department of Chemistry, University of Wisconsin−Madison, Madison, Wisconsin 53706, United States
| | - Daniel J. Weix
- Department of Chemistry, University of Wisconsin−Madison, Madison, Wisconsin 53706, United States
| |
Collapse
|
2
|
Palkowitz MD, Laudadio G, Kolb S, Choi J, Oderinde MS, Ewing TEH, Bolduc PN, Chen T, Zhang H, Cheng PTW, Zhang B, Mandler MD, Blasczak VD, Richter JM, Collins MR, Schioldager RL, Bravo M, Dhar TGM, Vokits B, Zhu Y, Echeverria PG, Poss MA, Shaw SA, Clementson S, Petersen NN, Mykhailiuk PK, Baran PS. Overcoming Limitations in Decarboxylative Arylation via Ag-Ni Electrocatalysis. J Am Chem Soc 2022; 144:17709-17720. [PMID: 36106767 PMCID: PMC9805175 DOI: 10.1021/jacs.2c08006] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
A useful protocol for achieving decarboxylative cross-coupling (DCC) of redox-active esters (RAE, isolated or generated in situ) and halo(hetero)arenes is reported. This pragmatically focused study employs a unique Ag-Ni electrocatalytic platform to overcome numerous limitations that have plagued this strategically powerful transformation. In its optimized form, coupling partners can be combined in a surprisingly simple way: open to the air, using technical-grade solvents, an inexpensive ligand and Ni source, and substoichiometric AgNO3, proceeding at room temperature with a simple commercial potentiostat. Most importantly, all of the results are placed into context by benchmarking with state-of-the-art methods. Applications are presented that simplify synthesis and rapidly enable access to challenging chemical space. Finally, adaptation to multiple scale regimes, ranging from parallel milligram-based synthesis to decagram recirculating flow is presented.
Collapse
Affiliation(s)
- Maximilian D Palkowitz
- Department of Chemistry, Scripps Research, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Gabriele Laudadio
- Department of Chemistry, Scripps Research, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Simon Kolb
- Department of Chemistry, Scripps Research, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Jin Choi
- Department of Chemistry, Scripps Research, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Martins S Oderinde
- Bristol Myers Squibb Research and Development, P.O. Box 4000, Princeton, New Jersey 08534, United States
| | - Tamara El-Hayek Ewing
- Department of Chemistry, Scripps Research, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Philippe N Bolduc
- Biogen Inc., 225 Binney Street, Cambridge, Massachusetts 02142, United States
| | - TeYu Chen
- Biogen Inc., 225 Binney Street, Cambridge, Massachusetts 02142, United States
| | - Hao Zhang
- Bristol Myers Squibb Research and Development, P.O. Box 4000, Princeton, New Jersey 08534, United States
| | - Peter T W Cheng
- Bristol Myers Squibb Research and Development, P.O. Box 4000, Princeton, New Jersey 08534, United States
| | - Benxiang Zhang
- Department of Chemistry, Scripps Research, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Michael D Mandler
- Bristol Myers Squibb Research and Development, P.O. Box 4000, Princeton, New Jersey 08534, United States
| | - Vanna D Blasczak
- Biogen Inc., 225 Binney Street, Cambridge, Massachusetts 02142, United States
| | - Jeremy M Richter
- Bristol Myers Squibb Research and Development, P.O. Box 4000, Princeton, New Jersey 08534, United States
| | - Michael R Collins
- Oncology Medicinal Chemistry Department, Pfizer Pharmaceuticals, 10770 Science Center Drive, San Diego, California 92121, United States
| | - Ryan L Schioldager
- Oncology Medicinal Chemistry Department, Pfizer Pharmaceuticals, 10770 Science Center Drive, San Diego, California 92121, United States
| | - Martin Bravo
- Oncology Medicinal Chemistry Department, Pfizer Pharmaceuticals, 10770 Science Center Drive, San Diego, California 92121, United States
| | - T G Murali Dhar
- Bristol Myers Squibb Research and Development, P.O. Box 4000, Princeton, New Jersey 08534, United States
| | - Benjamin Vokits
- Bristol Myers Squibb Research and Development, P.O. Box 4000, Princeton, New Jersey 08534, United States
| | - Yeheng Zhu
- Bristol Myers Squibb Research and Development, P.O. Box 4000, Princeton, New Jersey 08534, United States
| | | | - Michael A Poss
- Bristol Myers Squibb Research and Development, P.O. Box 4000, Princeton, New Jersey 08534, United States
| | - Scott A Shaw
- Bristol Myers Squibb Research and Development, P.O. Box 4000, Princeton, New Jersey 08534, United States
| | | | | | | | - Phil S Baran
- Department of Chemistry, Scripps Research, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| |
Collapse
|