1
|
Zhang S, Yuan J, Huang G, Ma C, Yang J, Yang L, Xiao Y, Qu L. Visible-Light-Induced Intramolecular Tandem Cyclization of Unactivated Indoloalkynes for the Synthesis of Sulfonylated and Selenylated Indolo[1,2- a]quinolines. J Org Chem 2023; 88:11712-11727. [PMID: 37530760 DOI: 10.1021/acs.joc.3c00997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/03/2023]
Abstract
A convenient and efficient visible-light-induced method has been developed for the construction of sulfonated and selenylated indolo[1,2-a]quinolines through sulfonyl or selenyl radical-initiated tandem cyclization of unactivated alkynes with sodium sulfinates or diaryl diselenides under mild conditions. This protocol, which simply utilizes visible light as the safe and eco-friendly energy source and an inexpensive and nontoxic organic dye as a photocatalyst without the aid of an external photocatalyst, provides various sulfonyl- and selenyl-containing indolo[1,2-a]quinolines in moderate to good yields.
Collapse
Affiliation(s)
- Shouren Zhang
- Henan Key Laboratory of Nanocomposites and Applications, Institute of Nanostructured Functional Materials, Huanghe Science and Technology College, Zhengzhou 450006, P. R. China
| | - Jinwei Yuan
- School of Chemistry & Chemical Engineering, Henan University of Technology, Zhengzhou 450001, P. R. China
| | - Guangchao Huang
- School of Chemistry & Chemical Engineering, Henan University of Technology, Zhengzhou 450001, P. R. China
| | - Chengjia Ma
- School of Chemistry & Chemical Engineering, Henan University of Technology, Zhengzhou 450001, P. R. China
| | - Jingjing Yang
- School of Chemistry & Chemical Engineering, Henan University of Technology, Zhengzhou 450001, P. R. China
| | - Liangru Yang
- School of Chemistry & Chemical Engineering, Henan University of Technology, Zhengzhou 450001, P. R. China
| | - Yongmei Xiao
- School of Chemistry & Chemical Engineering, Henan University of Technology, Zhengzhou 450001, P. R. China
| | - Lingbo Qu
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, P. R. China
| |
Collapse
|
2
|
Mo B, Li Z, Peng J, Chen C. Novel lignin-supported copper complex as a highly efficient and recyclable nanocatalyst for Ullmann reaction. Int J Biol Macromol 2023; 239:124263. [PMID: 37004929 DOI: 10.1016/j.ijbiomac.2023.124263] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 03/14/2023] [Accepted: 03/27/2023] [Indexed: 04/03/2023]
Abstract
In this work, we prepared polyhydroxylated lignin by demethylation and hydroxylation of lignin, and grafted phosphorus-containing groups by nucleophilic substitution reaction, the resulting material could be used as a carrier for the preparation of heterogeneous Cu-based catalysts (PHL-CuI-OPR2). The optimal PHL-CuI-OPtBu2 catalyst was characterized by FT-IR, TGA, BET, XRD, SEM-EDS, ICP-OES, XPS. The catalytic performance of PHL-CuI-OPtBu2 in the Ullmann CN coupling reaction was evaluated using iodobenzene and nitroindole as model substrates under nitrogen atmosphere with DME and H2O as cosolvent at 95 °C for 24 h. The applicability of modified lignin-supported copper catalyst was investigated of various aryl/heteroaryl halides with indoles under optimal conditions, the corresponding products were obtained with high yield. Additionally, it could be easily recovered from the reaction medium by an easy centrifugation and washing.
Collapse
|
3
|
Preparation, Characterization of New Antimicrobial Antitumor Hybrid Semi-Organic Single Crystals of Proline Amino Acid Doped by Silver Nanoparticles. Biomedicines 2023; 11:biomedicines11020360. [PMID: 36830897 PMCID: PMC9952970 DOI: 10.3390/biomedicines11020360] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 12/06/2022] [Accepted: 01/12/2023] [Indexed: 01/28/2023] Open
Abstract
Proline is water soluble amino acid extensively used in drug delivery systems. Compounds of cobalt (Co) transition metal have potent antimicrobial and anticancer activities. However, a drug delivery system combining proline cobalt is not reported yet. For the first time, new hybrid semi-organic single crystals of proline cobalt chloride (PCC) are prepared. The novelty of the article is also that single crystal proline cobalt chloride showed potent antimicrobial and antitumor activity. Doping of PCC by Ag0NPs significantly increased these biological activities. The anisotropic magnetic properties of single crystals can mitigate the cytotoxicity of Ag0NPs on normal cells. Silver nanoparticles (Ag0NPs) improved the crystal habits and physicochemical properties. Ag0NPs showed the best performance, paramagnetic materials n-type semiconductors due to delocalized excess electrons of Ag0NPs incorporated in the crystal lattice interstitially. Crystals have high absorptivity for UV-radiation electromagnetic radiation. Ag0NPs enhanced AC electrical conductivity up to 2.3 × 104 Ω cm-1 due to high electron density. Proline doped crystals are obtained in good purity as triclinic unit cell with having anisotropic magnetism. PCCAg0NPs crystal exhibited: high antimicrobial activities to various bacterial and fungal species, inhibition zone (mm): 21, 25, 24, 26, 30, 28, 12, and 46 for S. aureus, E. faecalis, S. typhi, E. coli, P. aerugino, K. pneumoniae, A. braselienses, and C. albicans, respectively, in comparison to ciprofloxacin antibiotic (23, 0, 26, 26, 25, 0, 0, 0) for the same tested species, respectively; higher cytotoxicity against breast cancer cells (IC50 22.1 μM) than the reference drug cisplatin (IC50 11.7 μM); and lower cytotoxicity to normal healthy lung cells MRC-5, (IC50 145.5 μM) than cisplatin (IC50 30.2 μM). Hence, this crystal is a candidate for chemotherapy of breast cancer.
Collapse
|
4
|
Wittmann C, Bacher F, Enyedy EA, Dömötör O, Spengler G, Madejski C, Reynisson J, Arion VB. Highly Antiproliferative Latonduine and Indolo[2,3- c]quinoline Derivatives: Complex Formation with Copper(II) Markedly Changes the Kinase Inhibitory Profile. J Med Chem 2022; 65:2238-2261. [PMID: 35104137 PMCID: PMC8842277 DOI: 10.1021/acs.jmedchem.1c01740] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
![]()
A series of latonduine
and indoloquinoline derivatives HL1–HL8 and their copper(II)
complexes (1–8) were synthesized and comprehensively
characterized. The structures of five compounds (HL6, [CuCl(L1)(DMF)]·DMF, [CuCl(L2)(CH3OH)], [CuCl(L3)]·0.5H2O, and [CuCl2(H2L5)]Cl·2DMF) were elucidated
by single crystal X-ray diffraction. The copper(II) complexes revealed
low micro- to sub-micromolar IC50 values with promising
selectivity toward human colon adenocarcinoma multidrug-resistant
Colo320 cancer cells as compared to the doxorubicin-sensitive Colo205
cell line. The lead compounds HL4 and 4 as well as HL8 and 8 induced apoptosis efficiently in Colo320 cells. In addition, the
copper(II) complexes had higher affinity to DNA than their metal-free
ligands. HL8 showed selective inhibition for
the PIM-1 enzyme, while 8 revealed strong inhibition
of five other enzymes, i.e., SGK-1, PKA, CaMK-1, GSK3β, and
MSK1, from a panel of 50 kinases. Furthermore, molecular modeling
of the ligands and complexes showed a good fit to the binding pockets
of these targets.
Collapse
Affiliation(s)
- Christopher Wittmann
- Institute of Inorganic Chemistry of the University of Vienna, Währinger Strasse, 42, Vienna A1090, Austria
| | - Felix Bacher
- Institute of Inorganic Chemistry of the University of Vienna, Währinger Strasse, 42, Vienna A1090, Austria
| | - Eva A Enyedy
- Department of Inorganic and Analytical Chemistry, Interdisciplinary Excellence Centre, University of Szeged, Dóm tér 7, Szeged H-6720, Hungary.,MTA-SZTE Lendület Functional Metal Complexes Research Group, University of Szeged, Dóm tér 7, Szeged H-6720, Hungary
| | - Orsolya Dömötör
- Department of Inorganic and Analytical Chemistry, Interdisciplinary Excellence Centre, University of Szeged, Dóm tér 7, Szeged H-6720, Hungary.,MTA-SZTE Lendület Functional Metal Complexes Research Group, University of Szeged, Dóm tér 7, Szeged H-6720, Hungary
| | - Gabriella Spengler
- MTA-SZTE Lendület Functional Metal Complexes Research Group, University of Szeged, Dóm tér 7, Szeged H-6720, Hungary.,Department of Medical Microbiology, Albert Szent-Györgyi Health Center and Albert Szent-Györgyi Medical School, University of Szeged, Semmelweis u. 6, Szeged H-6725, Hungary
| | - Christian Madejski
- Institute of Inorganic Chemistry of the University of Vienna, Währinger Strasse, 42, Vienna A1090, Austria
| | - Jóhannes Reynisson
- School of Pharmacy and Bioengineering, Keele University, Hornbeam Building, Staffordshire ST5 5BG, United Kingdom
| | - Vladimir B Arion
- Institute of Inorganic Chemistry of the University of Vienna, Währinger Strasse, 42, Vienna A1090, Austria
| |
Collapse
|
5
|
M. Honnanayakanavar J, Owk O, Suresh S. Recent Advances in the Tandem Copper-Catalyzed Ullmann-Goldberg N-Arylation–Cyclization Strategies. Org Biomol Chem 2022; 20:2993-3028. [DOI: 10.1039/d2ob00082b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
N‒Aryl bond formation under copper catalysis has been playing a pivotal role and has been extensively used as a key step in the total syntheses of several therapeutic molecules. The...
Collapse
|