Wang ZC, Stegall H, Miyazawa T, Keatinge-Clay AT. A CRISPR-Cas9 system for knock-out and knock-in of high molecular weight DNA enables module-swapping of the pikromycin synthase in its native host.
Microb Cell Fact 2025;
24:125. [PMID:
40426207 PMCID:
PMC12117839 DOI:
10.1186/s12934-025-02741-w]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2025] [Accepted: 05/06/2025] [Indexed: 05/29/2025] Open
Abstract
BACKGROUND
Engineers seeking to generate natural product analogs through altering modular polyketide synthases (PKSs) face significant challenges when genomically editing large stretches of DNA.
RESULTS
We describe a CRISPR-Cas9 system that was employed to reprogram the PKS in Streptomyces venezuelae ATCC 15439 that helps biosynthesize the macrolide antibiotic pikromycin. We first demonstrate its precise editing ability by generating strains that lack megasynthase genes pikAI-pikAIV or the entire pikromycin biosynthetic gene cluster but produce pikromycin upon complementation. We then employ it to replace 4.4-kb modules in the pikromycin synthase with those of other synthases to yield two new macrolide antibiotics with activities similar to pikromycin.
CONCLUSION
Our gene-editing tool has enabled the efficient replacement of extensive and repetitive DNA regions within streptomycetes.
Collapse