1
|
Leroy JLMR, Valckx SDM, Jordaens L, De Bie J, Desmet KLJ, Van Hoeck V, Britt JH, Marei WF, Bols PEJ. Nutrition and maternal metabolic health in relation to oocyte and embryo quality: critical views on what we learned from the dairy cow model. Reprod Fertil Dev 2017; 27:693-703. [PMID: 25690396 DOI: 10.1071/rd14363] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Accepted: 01/08/2015] [Indexed: 11/23/2022] Open
Abstract
Although fragmented and sometimes inconsistent, the proof of a vital link between the importance of the physiological status of the mother and her subsequent reproductive success is building up. High-yielding dairy cows are suffering from a substantial decline in fertility outcome over past decades. For many years, this decrease in reproductive output has correctly been considered multifactorial, with factors including farm management, feed ratios, breed and genetics and, last, but not least, ever-rising milk production. Because the problem is complex and requires a multidisciplinary approach, it is hard to formulate straightforward conclusions leading to improvements on the 'work floor'. However, based on remarkable similarities on the preimplantation reproductive side between cattle and humans, there is a growing tendency to consider the dairy cow's negative energy balance and accompanying fat mobilisation as an interesting model to study the impact of maternal metabolic disorders on human fertility and, more specifically, on oocyte and preimplantation embryo quality. Considering the mutual interest of human and animal scientists studying common reproductive problems, this review has several aims. First, we briefly introduce the 'dairy cow case' by describing the state of the art of research into metabolic imbalances and their possible effects on dairy cow reproduction. Second, we try to define relevant in vitro models that can clarify certain mechanisms by which aberrant metabolite levels may influence embryonic health. We report on recent advances in the assessment of embryo metabolism and meantime critically elaborate on advantages and major limitations of in vitro models used so far. Finally, we discuss hurdles to be overcome to successfully translate the scientific data to the field.
Collapse
Affiliation(s)
- Jo L M R Leroy
- Gamete Research Centre, Veterinary Physiology and Biochemistry, Departement of Veterinary Sciences, University of Antwerp, Universiteitsplein 1, B2610 Wilrijk, Belgium
| | - Sara D M Valckx
- Gamete Research Centre, Veterinary Physiology and Biochemistry, Departement of Veterinary Sciences, University of Antwerp, Universiteitsplein 1, B2610 Wilrijk, Belgium
| | - Lies Jordaens
- Gamete Research Centre, Veterinary Physiology and Biochemistry, Departement of Veterinary Sciences, University of Antwerp, Universiteitsplein 1, B2610 Wilrijk, Belgium
| | - Jessie De Bie
- Gamete Research Centre, Veterinary Physiology and Biochemistry, Departement of Veterinary Sciences, University of Antwerp, Universiteitsplein 1, B2610 Wilrijk, Belgium
| | - Karolien L J Desmet
- Gamete Research Centre, Veterinary Physiology and Biochemistry, Departement of Veterinary Sciences, University of Antwerp, Universiteitsplein 1, B2610 Wilrijk, Belgium
| | - Veerle Van Hoeck
- Laboratório de Fisiologia e Endocrinologia Molecular, University SaoPaulo Pirassununga, CEP 13-3565-4220 Pirassununga, Sao Paulo, Brasil
| | - Jack H Britt
- Department of Animal Science, North Carolina State University, Raleigh, NC 27695-7621, USA
| | - Waleed F Marei
- Gamete Research Centre, Veterinary Physiology and Biochemistry, Departement of Veterinary Sciences, University of Antwerp, Universiteitsplein 1, B2610 Wilrijk, Belgium
| | - Peter E J Bols
- Gamete Research Centre, Veterinary Physiology and Biochemistry, Departement of Veterinary Sciences, University of Antwerp, Universiteitsplein 1, B2610 Wilrijk, Belgium
| |
Collapse
|
2
|
Abstract
SummaryGene expression profiling of in vivo- and in vitro-matured bovine oocytes can identify transcripts related to the developmental potential of oocytes. Nonetheless, the effects of in vitro culturing oocytes are yet to be fully understood. We tested the effects of in vitro maturation on the transcript profile of oocytes collected from Bos taurus indicus cows. We quantified the expression of 1488 genes in in vivo- and in vitro-matured oocytes. Of these, 51 genes were up-regulated, whereas 56 were down-regulated (≥2-fold) in in vivo-matured oocytes in comparison with in vitro-matured oocytes. Quantitative real-time polymerase chain reaction (PCR) of nine genes confirmed the microarray results of differential expression between in vivo- and in vitro-matured oocytes (EZR, EPN1, PSEN2, FST, IGFBP3, RBBP4, STAT3, FDPS and IRS1). We interrogated the results for enrichment of Gene Ontology categories and overlap with protein–protein interactions. The results revealed that the genes altered by in vitro maturation are mostly related to the regulation of oocyte metabolism. Additionally, analysis of protein–protein interactions uncovered two regulatory networks affected by the in vitro culture system. We propose that the differentially expressed genes are candidates for biomarkers of oocyte competence. In vitro oocyte maturation can affect the abundance of specific transcripts and are likely to deplete the developmental competence.
Collapse
|
3
|
Dalto BD, Tsoi S, Audet I, Dyck MK, Foxcroft GR, Matte JJ. Gene expression of porcine blastocysts from gilts fed organic or inorganic selenium and pyridoxine. Reproduction 2014; 149:31-42. [PMID: 25326430 DOI: 10.1530/rep-14-0408] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
In this study, we determined how maternal dietary supplementation with pyridoxine combined with different sources of selenium (Se) affected global gene expression of porcine expanded blastocysts (PEB) during pregnancy. Eighteen gilts were randomly assigned to one of the three experimental diets (n=6 per treatment): i) basal diet without supplemental Se or pyridoxine (CONT); ii) CONT+0.3 mg/kg of Na-selenite and 10 mg/kg of HCl-pyridoxine (MSeB610); and iii) CONT+0.3 mg/kg of Se-enriched yeast and 10 mg/kg of HCl-pyridoxine (OSeB610). All gilts were inseminated at their fifth post-pubertal estrus and killed 5 days later for embryo harvesting. A porcine embryo-specific microarray was used to detect differentially gene expression between MSeB610 vs CONT, OSeB610 vs CONT, and OSeB610 vs MSeB610. CONT gilts had lower whole blood Se and erythrocyte pyridoxal-5-P concentrations than supplemented gilts (P<0.05). No treatment effect was observed on blood plasma Se-glutathione peroxidase activity (P=0.57). There were 10, 247, and 96 differentially expressed genes for MSeB610 vs CONT, OSeB610 vs CONT, and OSeB610 vs MSeB610 respectively. No specific biological process was associated with MSeB610 vs CONT. However, for OSeB610 vs CONT, upregulated genes were related with global protein synthesis but not to selenoproteins. The stimulation of some genes related with monooxygenase and thioredoxin families was confirmed by quantitative real-time RT-PCR. In conclusion, OSeB610 affects PEB metabolism more markedly than MSeB610. Neither Se sources with pyridoxine influenced the Se-glutathione peroxidase metabolic pathway in the PEB, but OSeB610 selectively stimulated genes involved with antioxidant defense.
Collapse
Affiliation(s)
- B D Dalto
- Dairy and Swine Research and Development CentreAgriculture and Agri-Food Canada, 2000 College Street, Sherbrooke, Quebec, Canada J1M 0C8Department of AgriculturalFood and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada T6G 2P5Department of Animal ScienceUniversidade Estadual de Londrina, Londrina, Paraná 86057-970, Brazil Dairy and Swine Research and Development CentreAgriculture and Agri-Food Canada, 2000 College Street, Sherbrooke, Quebec, Canada J1M 0C8Department of AgriculturalFood and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada T6G 2P5Department of Animal ScienceUniversidade Estadual de Londrina, Londrina, Paraná 86057-970, Brazil
| | - S Tsoi
- Dairy and Swine Research and Development CentreAgriculture and Agri-Food Canada, 2000 College Street, Sherbrooke, Quebec, Canada J1M 0C8Department of AgriculturalFood and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada T6G 2P5Department of Animal ScienceUniversidade Estadual de Londrina, Londrina, Paraná 86057-970, Brazil
| | - I Audet
- Dairy and Swine Research and Development CentreAgriculture and Agri-Food Canada, 2000 College Street, Sherbrooke, Quebec, Canada J1M 0C8Department of AgriculturalFood and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada T6G 2P5Department of Animal ScienceUniversidade Estadual de Londrina, Londrina, Paraná 86057-970, Brazil
| | - M K Dyck
- Dairy and Swine Research and Development CentreAgriculture and Agri-Food Canada, 2000 College Street, Sherbrooke, Quebec, Canada J1M 0C8Department of AgriculturalFood and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada T6G 2P5Department of Animal ScienceUniversidade Estadual de Londrina, Londrina, Paraná 86057-970, Brazil
| | - G R Foxcroft
- Dairy and Swine Research and Development CentreAgriculture and Agri-Food Canada, 2000 College Street, Sherbrooke, Quebec, Canada J1M 0C8Department of AgriculturalFood and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada T6G 2P5Department of Animal ScienceUniversidade Estadual de Londrina, Londrina, Paraná 86057-970, Brazil
| | - J J Matte
- Dairy and Swine Research and Development CentreAgriculture and Agri-Food Canada, 2000 College Street, Sherbrooke, Quebec, Canada J1M 0C8Department of AgriculturalFood and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada T6G 2P5Department of Animal ScienceUniversidade Estadual de Londrina, Londrina, Paraná 86057-970, Brazil
| |
Collapse
|
4
|
Hoelker M, Held E, Salilew-Wondim D, Schellander K, Tesfaye D. Molecular signatures of bovine embryo developmental competence. Reprod Fertil Dev 2014; 26:22-36. [PMID: 24305174 DOI: 10.1071/rd13255] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Assessment of the developmental capacity of early bovine embryos is still an obstacle. Therefore, the present paper reviews all current knowledge with respect to morphological criteria and environmental factors that affect embryo quality. The molecular signature of an oocyte or embryo is considered to reflect its quality and to predict its subsequent developmental capacity. Therefore, the primary aim of the present review is to provide an overview of reported correlations between molecular signatures and developmental competence. A secondary aim of this paper is to present some new strategies to enable concomitant evaluation of the molecular signatures of specific embryos and individual developmental capacity.
Collapse
Affiliation(s)
- M Hoelker
- Institute of Animal Science, Animal Breeding and Husbandry Group, University of Bonn, Endenicher Alle 15, 53115 Bonn, Germany
| | | | | | | | | |
Collapse
|
5
|
Tsoi S, Zhou C, Grant JR, Pasternak JA, Dobrinsky J, Rigault P, Nieminen J, Sirard MA, Robert C, Foxcroft GR, Dyck MK. Development of a porcine (Sus scofa) embryo-specific microarray: array annotation and validation. BMC Genomics 2012; 13:370. [PMID: 22863022 PMCID: PMC3468353 DOI: 10.1186/1471-2164-13-370] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2012] [Accepted: 07/18/2012] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND The domestic pig is an important livestock species and there is strong interest in the factors that affect the development of viable embryos and offspring in this species. A limited understanding of the molecular mechanisms involved in early embryonic development has inhibited our ability to fully elucidate these factors. Next generation deep sequencing and microarray technologies are powerful tools for delineation of molecular pathways involved in the developing embryo. RESULTS Here we present the development of a porcine-embryo-specific microarray platform created from a large expressed sequence tag (EST) analysis generated by Roche/454 next-generation sequencing of cDNAs constructed from critical stages of in vivo or in vitro porcine preimplantation embryos. Two cDNA libraries constructed from in vitro and in vivo produced preimplantation porcine embryos were normalized and sequenced using 454 Titanium pyrosequencing technology. Over one million high-quality EST sequences were obtained and used to develop the EMbryogene Porcine Version 1 (EMPV1) microarray composed of 43,795 probes. Based on an initial probe sequence annotation, the EMPV1 features 17,409 protein-coding, 473 pseudogenes, 46 retrotransposed, 2,359 non-coding RNA, 4,121 splice variants in 2,862 genes and a total of 12,324 Novel Transcript Regions (NTR). After re-annotation, the total unique genes increased from 11,961 to 16,281 and 1.9% of them belonged to a large olfactory receptor (OR) gene family. Quality control on the EMPV1 was performed and revealed an even distribution of ten clusters of spiked-in control spots and array to array (dye-swap) correlation was 0.97. CONCLUSIONS Using next-generation deep sequencing we have produced a large EST dataset to allow for the selection of probe sequences for the development of the EMPV1 microarray platform. The quality of this embryo-specific array was confirmed with a high-level of reproducibility using current Agilent microarray technology. With more than an estimated 20,000 unique genes represented on the EMPV1, this platform will provide the foundation for future research into the in vivo and in vitro factors that affect the viability of porcine embryos, as well as the effects of these factors on the live offspring that result from these embryos.
Collapse
Affiliation(s)
- Stephen Tsoi
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, T6G 2P5, Canada.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Bermejo-Alvarez P, Pericuesta E, Miranda A, de Frutos C, Pérez-Cerezales S, Lucio A, Rizos D, Gutierrez-Adan A. New challenges in the analysis of gene transcription in bovine blastocysts. Reprod Domest Anim 2012; 46 Suppl 3:2-10. [PMID: 21854456 DOI: 10.1111/j.1439-0531.2011.01842.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In the last years, enormous progress has been made in the analysis of gene transcription at the blastocyst stage. The study of gene expression at this early stage of development is challenging because of the very small amount of starting material, which limits the use of traditional mRNA analysis approaches such as Northern blot. Another problem is the difficulty for data normalization, particularly the identification of the best housekeeping gene with the lowest fluctuation under different developmental conditions. Moreover, the transcriptional analysis of embryo biopsies or individual embryos needs to take into consideration that the blastocyst is a transitional stage of development, which is composed of three different types of cells (trophoblast, epiblast and primitive ectoderm) with different patterns of gene expression, and that there are large differences between male and female blastocysts. In this review, we analyse the different specific and sensitive tools available to compare mRNA expression levels of specific genes at the blastocyst stage, and how the protocol and the analytical method used can influence the results dramatically. Finally, we describe future research challenges to identify candidate genes related to developmental competence of bovine blastocysts, not only in terms of pregnancy rates but also in relation to adverse long-term consequences in the adult animal.
Collapse
Affiliation(s)
- P Bermejo-Alvarez
- Bond Life Sciences Center, University of Missouri, Columbia, MO, USA
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Almiñana C, Fazeli A. Exploring the application of high-throughput genomics technologies in the field of maternal-embryo communication. Theriogenology 2012; 77:717-37. [PMID: 22217573 DOI: 10.1016/j.theriogenology.2011.11.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2011] [Revised: 08/30/2011] [Accepted: 09/02/2011] [Indexed: 01/23/2023]
Abstract
Deciphering the complex molecular dialogue between the maternal tract and embryo is crucial to increasing our understanding of pregnancy failure, infertility problems and in the modulation of embryo development, which has consequences through adulthood. High-throughput genomic technologies have been applied to look for a holistic view of the molecular interactions occurring during this dialogue. Among these technologies, microarrays have been widely used, being one of the most popular tools in maternal-embryo communication. Today, next generation sequencing technologies are dwarfing the capabilities of microarrays. The application of these new technologies has broadened to almost all areas of genomics research, because of their massive sequencing capacity. We review the current status of high-throughput genomic technologies and their application to maternal-embryo communication research. We also survey next generation technologies and their huge potential in many research areas. Given the diversity of unanswered questions in the field of maternal-embryo communication and the wide range of possibilities that these technologies offer, here we discuss future perspectives on the use of these technologies to enhance maternal-embryo research.
Collapse
Affiliation(s)
- Carmen Almiñana
- Academic Unit of Reproductive and Development Medicine, University of Sheffield, Sheffield, UK.
| | | |
Collapse
|
8
|
Weninger WJ, Geyer SH. Episcopic 3D Imaging Methods: Tools for Researching Gene Function. Curr Genomics 2011; 9:282-9. [PMID: 19452045 PMCID: PMC2682936 DOI: 10.2174/138920208784533601] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2008] [Revised: 04/14/2008] [Accepted: 04/17/2008] [Indexed: 12/02/2022] Open
Abstract
This work aims at describing episcopic 3D imaging methods and at discussing how these methods can contribute to researching the genetic mechanisms driving embryogenesis and tissue remodelling, and the genesis of pathologies. Several episcopic 3D imaging methods exist. The most advanced are capable of generating high-resolution volume data (voxel sizes from 0.5x0.5x1 µm upwards) of small to large embryos of model organisms and tissue samples. Beside anatomy and tissue architecture, gene expression and gene product patterns can be three dimensionally analyzed in their precise anatomical and histological context with the aid of whole mount in situ hybridization or whole mount immunohistochemical staining techniques. Episcopic 3D imaging techniques were and are employed for analyzing the precise morphological phenotype of experimentally malformed, randomly produced, or genetically engineered embryos of biomedical model organisms. It has been shown that episcopic 3D imaging also fits for describing the spatial distribution of genes and gene products during embryogenesis, and that it can be used for analyzing tissue samples of adult model animals and humans. The latter offers the possibility to use episcopic 3D imaging techniques for researching the causality and treatment of pathologies or for staging cancer. Such applications, however, are not yet routine and currently only preliminary results are available. We conclude that, although episcopic 3D imaging is in its very beginnings, it represents an upcoming methodology, which in short terms will become an indispensable tool for researching the genetic regulation of embryo development as well as the genesis of malformations and diseases.
Collapse
Affiliation(s)
- Wolfgang J Weninger
- IMG, Centre for Anatomy and Cell Biology, Medical University of Vienna, Waehringer Str. 13, A-1090 Vienna, Austria
| | | |
Collapse
|
9
|
Hsu CC, Chiang CW, Cheng HC, Chang WT, Chou CY, Tsai HW, Lee CT, Wu ZH, Lee TY, Chao A, Chow NH, Ho CL. Identifying LRRC16B as an oncofetal gene with transforming enhancing capability using a combined bioinformatics and experimental approach. Oncogene 2010; 30:654-67. [PMID: 21102520 DOI: 10.1038/onc.2010.451] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Oncofetal genes are expressed in embryos or fetuses, are downregulated or undetectable in adult tissues, and then re-expressed in tumors. Known oncofetal genes, such as AFP, GCB, FGF18, IMP-1 and SOX1, often have important clinical applications or pivotal biological functions. To find new oncofetal-like genes, we used the public information of expressed sequence tags to systematically analyze gene expression patterns and identified a novel oncofetal-like gene, LRRC16B. It increased the proliferation, anchorage-independent growth and tumorigenesis of transformed cells in xenografts, possibly through its effects on cyclin B1 protein levels. These findings exemplify the feasibility of using bioinformatics to find new oncofetal-like genes and suggest that more genes with important functional roles will be uncovered in the candidate gene list.
Collapse
Affiliation(s)
- C-C Hsu
- Institute of Basic Medical Science, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
|
11
|
Marjani SL, Le Bourhis D, Vignon X, Heyman Y, Everts RE, Rodriguez-Zas SL, Lewin HA, Renard JP, Yang X, Tian XC. Embryonic gene expression profiling using microarray analysis. Reprod Fertil Dev 2009; 21:22-30. [DOI: 10.1071/rd08217] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Microarray technology enables the interrogation of thousands of genes at one time and therefore a systems level of analysis. Recent advances in the amplification of RNA, genome sequencing and annotation, and the lower cost of developing microarrays or purchasing them commercially, have facilitated the analysis of single preimplantation embryos. The present review discusses the components of embryonic expression profiling and examines current research that has used microarrays to study the effects of in vitro production and nuclear transfer.
Collapse
|
12
|
Genome-wide expression profiling reveals distinct clusters of transcriptional regulation during bovine preimplantation development in vivo. Proc Natl Acad Sci U S A 2008; 105:19768-73. [PMID: 19064908 DOI: 10.1073/pnas.0805616105] [Citation(s) in RCA: 120] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Bovine embryos can be generated by in vitro fertilization or somatic nuclear transfer; however, these differ from their in vivo counterparts in many aspects and exhibit a higher proportion of developmental abnormalities. Here, we determined for the first time the transcriptomes of bovine metaphase II oocytes and all stages of preimplantation embryos developing in vivo up to the blastocyst using the Affymetrix GeneChip Bovine Genome Array which examines approximately 23,000 transcripts. The data show that bovine oocytes and embryos transcribed a significantly higher number of genes than somatic cells. Several hundred genes were transcribed well before the 8-cell stage, at which the major activation of the bovine genome expression occurs. Importantly, stage-specific expression patterns in 2-cell, 4-cell, and 8-cell stages, and in morulae and blastocysts, were detected, indicating dynamic changes in the embryonic transcriptome and in groups of transiently active genes. Pathway analysis revealed >120 biochemical pathways that are operative in early preimplantation bovine development. Significant differences were observed between the mRNA expression profiles of in vivo and in vitro matured oocytes, highlighting the need to include in vivo derived oocytes/embryos in studies evaluating assisted reproductive techniques. This study provides the first comprehensive analysis of gene expression and transcriptome dynamics of in vivo developing bovine embryos and will serve as a basis for improving assisted reproductive technology.
Collapse
|
13
|
Robert C. Challenges of functional genomics applied to farm animal gametes and pre-hatching embryos. Theriogenology 2008; 70:1277-87. [PMID: 18653224 DOI: 10.1016/j.theriogenology.2008.06.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The genomes of many commercially important farm animals have already been or are in the process of being decrypted. The genomic era is generating an important wave of downstream developments and derived disciplines are also progressing at a very fast pace. The post-genomic era is already ongoing as exemplified by the introduction of new concepts such as phenomics and functional genomics. These new fields are complementary but do not necessarily target similar applications even though they are often used to refer to one another. In an attempt to categorize the fields according to their respective potential applications, a brief comparative description of phenomics and functional genomics has been put together. However, the focus of this paper is mainly directed toward the introduction of functional genomics specifically applied to the study of the molecular mechanisms underlying gamete and early mammalian developments. Many aspects of the peculiar nature of these cells are introducing numerous methodological challenges to the applicability of functional genomics to unravel their molecular physiology. This is particularly true for transcriptomic studies and it is currently of high relevance for the field of reproductive biology to take into consideration these technical hurdles before tackling the implementation of this technology on a large scale. Nonetheless, functional genomics should prove to be up to the expectations in providing sound information to better understand the fascinating window spanning gamete development that leads to the first weeks of life.
Collapse
Affiliation(s)
- C Robert
- Département des Sciences Animales, Université Laval, Québec, Canada G1K 7P4.
| |
Collapse
|
14
|
Evans ACO, Forde N, OGorman GM, Zielak AE, Lonergan P, Fair T. Use of Microarray Technology to Profile Gene Expression Patterns Important for Reproduction in Cattle. Reprod Domest Anim 2008; 43 Suppl 2:359-67. [DOI: 10.1111/j.1439-0531.2008.01185.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|