1
|
Matosinho CGR, Rosse IC, Fonseca PAS, de Oliveira FS, Dos Santos FG, Araújo FMG, de Matos Salim AC, Lopes BC, Arbex WA, Machado MA, Peixoto MGCD, da Silva Verneque R, Martins MF, da Silva MVGB, Oliveira G, Pires DEV, Carvalho MRS. Identification and in silico characterization of structural and functional impacts of genetic variants in milk protein genes in the Zebu breeds Guzerat and Gyr. Trop Anim Health Prod 2021; 53:524. [PMID: 34705124 DOI: 10.1007/s11250-021-02970-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 10/14/2021] [Indexed: 10/20/2022]
Abstract
Whole genome sequencing of bovine breeds has allowed identification of genetic variants in milk protein genes. However, functional repercussion of such variants at a molecular level has seldom been investigated. Here, the results of a multistep Bioinformatic analysis for functional characterization of recently identified genetic variants in Brazilian Gyr and Guzerat breeds is described, including predicted effects on the following: (i) evolutionary conserved nucleotide positions/regions; (ii) protein function, stability, and interactions; (iii) splicing, branching, and miRNA binding sites; (iv) promoters and transcription factor binding sites; and (v) collocation with QTL. Seventy-one genetic variants were identified in the caseins (CSN1S1, CSN2, CSN1S2, and CSN3), LALBA, LGB, and LTF genes. Eleven potentially regulatory variants and two missense mutations were identified. LALBA Ile60Val was predicted to affect protein stability and flexibility, by reducing the number the disulfide bonds established. LTF Thr546Asn is predicted to generate steric clashes, which could mildly affect iron coordination. In addition, LALBA Ile60Val and LTF Thr546Asn affect exonic splicing enhancers and silencers. Consequently, both mutations have the potential of affecting immune response at individual level, not only in the mammary gland. Although laborious, this multistep procedure for classifying variants allowed the identification of potentially functional variants for milk protein genes.
Collapse
Affiliation(s)
- Carolina Guimarães Ramos Matosinho
- Programa de Pós-Graduação Em GenéticaDepartamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, 31901-207, Brazil
| | - Izinara Cruz Rosse
- Programa de Pós-Graduação Em GenéticaDepartamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, 31901-207, Brazil
- Departamento de Farmácia, Escola de Farmácia, Universidade Federal de Ouro Preto, Ouro Preto, MG, 35400-000, Brazil
| | - Pablo Augusto Souza Fonseca
- Programa de Pós-Graduação Em GenéticaDepartamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, 31901-207, Brazil.
- Department of Animal Biosciences, Centre for Genetic Improvement of Livestock, University of Guelph, Guelph, ON, N1G2W1, Canada.
| | - Francislon Silva de Oliveira
- Programa de Pós-Graduação Em GenéticaDepartamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, 31901-207, Brazil
- Grupo de Genômica E Biologia Computacional, Centro de Pesquisas René Rachou - Fiocruz Minas, Belo Horizonte, MG, 30190-00, Brazil
| | - Fausto Gonçalves Dos Santos
- Grupo de Genômica E Biologia Computacional, Centro de Pesquisas René Rachou - Fiocruz Minas, Belo Horizonte, MG, 30190-00, Brazil
| | - Flávio Marcos Gomes Araújo
- Grupo de Genômica E Biologia Computacional, Centro de Pesquisas René Rachou - Fiocruz Minas, Belo Horizonte, MG, 30190-00, Brazil
| | - Anna Christina de Matos Salim
- Grupo de Genômica E Biologia Computacional, Centro de Pesquisas René Rachou - Fiocruz Minas, Belo Horizonte, MG, 30190-00, Brazil
| | | | | | | | | | - Rui da Silva Verneque
- EPAMIG, Belo Horizonte, MG, 31170-495, Brazil
- Embrapa Gado de Leite, Juiz de Fora, MG, 36038-330, Brazil
| | | | | | - Guilherme Oliveira
- Grupo de Genômica E Biologia Computacional, Centro de Pesquisas René Rachou - Fiocruz Minas, Belo Horizonte, MG, 30190-00, Brazil
- Instituto Tecnológico Vale, Belém, PA, 66055-09, Brazil
| | - Douglas Eduardo Valente Pires
- School of Computing and Information Systems, University of Melbourne, Parkville, VIC, 3052, Australia
- Bio21 Institute, University of Melbourne, Parkville, VIC, 3052, Australia
| | - Maria Raquel Santos Carvalho
- Programa de Pós-Graduação Em GenéticaDepartamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, 31901-207, Brazil
| |
Collapse
|
2
|
Wang SZ, E GX, Zeng Y, Han YG, Huang YF, Na RS. Three SNPs within exons of INHA and ACVR2B genes are significantly associated with litter size in Dazu black goats. Reprod Domest Anim 2021; 56:936-941. [PMID: 33720451 DOI: 10.1111/rda.13927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 03/12/2021] [Indexed: 11/26/2022]
Abstract
The aim of this study was to analyse the association between single-nucleotide polymorphisms within INHA and ACVR2B and litter size in Dazu black goats. In total, twenty-two SNPs were genotyped in 190 individuals by SNaPshot and resequencing. The results showed that three SNPs (SNP_1, SNP_12 and SNP_13 in this study) were detected to have significant additive genetic effect on the recorded goat litter size (p < .05). The SNP_1 (NC_030809.1), a non-synonymous substitution of G for T at chr2-g. 28314990 in the exon 2 of INHA gene (NM_001285606.1), resulted in homozygote 2 (HOM2) contributed 0.25 and heterozygote (HET) contributed 0.12 larger litter than homozygote 1 (HOM1). Meanwhile, SNP_12 (Chr22-g. 11721225 A > T) and SNP_13 (Chr22-g. 11721227 A > C) (NC_030829.1) simultaneously mutated at the first and third position of a triplet AAA (lysine, K) in the exon 4 of ACVR2B gene (XM_018066623.1) had estimated genetic effects of HOM1 (0.00) and HOM2 (0.03) larger than HET (-0.12). In conclusion, one SNPs (chr2-g. 28314990 T > G) within the exon 2 of INHA and two SNPs (Chr22-g. 11721225 A > T and Chr22-g. 11721227 A > C) in the exon 4 of ACVR2B gene were highly recommended as candidate markers of litter size in Dazu black goats. A large-scale association study to assess the impact of these variants on litter size is still necessary.
Collapse
Affiliation(s)
- Shi-Zhi Wang
- College of Animal Science and Technology, Southwest University, Chongqing, China
| | - Guang-Xin E
- College of Animal Science and Technology, Southwest University, Chongqing, China
| | - Yan Zeng
- College of Animal Science and Technology, Southwest University, Chongqing, China
| | - Yan-Guo Han
- College of Animal Science and Technology, Southwest University, Chongqing, China
| | - Yong-Fu Huang
- College of Animal Science and Technology, Southwest University, Chongqing, China
| | - Ri-Su Na
- College of Animal Science and Technology, Southwest University, Chongqing, China
| |
Collapse
|
3
|
Cui Z, Shen X, Zhang X, Li F, Amevor FK, Zhu Q, Wang Y, Li D, Shu G, Tian Y, Zhao X. A functional polymorphism of inhibin alpha subunit at miR-181b-1-3p-binding site regulates proliferation and apoptosis of chicken ovarian granular cells. Cell Tissue Res 2021; 384:545-560. [PMID: 33439349 DOI: 10.1007/s00441-020-03356-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Accepted: 11/18/2020] [Indexed: 10/22/2022]
Abstract
INHA, the gene encoding the inhibin alpha subunit, was involved in folliculogenesis in mammals, but no study was reported for its working pathway in birds. Here we hypothesize that gene polymorphism in INHA 3'UTR might influence miRNAs binding efficiency and further affect the function of this gene. Thus, we investigated the association between the 3'UTR single-nucleotide polymorphisms (SNPs) in INHA and the laying performance in chickens and further explore their possible molecular cascades in granulosa cells (GC). Five SNPs were detected in Tianfu green-shell layers and g. 22,178,975 G > A was significantly associated with total egg numbers at the age of 300 days (EN, n = 286). Birds carrying the AA genotype laid more EN than those with GG (P < 0.05). The allele transition from G to A in the 3'UTR of INHA gene destroyed a binding site which was targeted by miR-181b-1-3p. The expression abundances of INHA mRNA increased firstly and then decreased with follicle growing, and reached the top in the sixth largest pre-ovulation follicle, whereas miR-181b-1-3p levels in chicken pre-hierarchical follicles had the contrary tendency. Further studies indicated that high levels of miR-181b-1-3p increased apoptosis and reduced GC proliferation while miR-181b-1-3p inhibitors decreased apoptosis and promoted GC proliferation. Additionally, depression of INHA increased apoptosis and reduced GC proliferation via a caspase-3-dependent mitochondrial pathway. Generally, the mutation in INHA 3'UTR was tightly correlated with egg production in chickens, and blocked a binding site of miR-181b-1-3p. miR-181b-1-3p inhibited GC proliferation and promoted apoptosis by targeting INHA.
Collapse
Affiliation(s)
- Zhifu Cui
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China
| | - Xiaoxu Shen
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China
| | - Xianxian Zhang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China
| | - Fugui Li
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China
| | - Felix Kwame Amevor
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China
| | - Qing Zhu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yan Wang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China
| | - Diyan Li
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China
| | - Gang Shu
- Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yaofu Tian
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China
| | - Xiaoling Zhao
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China.
| |
Collapse
|
4
|
Melatonin Promotes the Proliferation of Chicken Sertoli Cells by Activating the ERK/Inhibin Alpha Subunit Signaling Pathway. Molecules 2020; 25:molecules25051230. [PMID: 32182838 PMCID: PMC7179446 DOI: 10.3390/molecules25051230] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 03/04/2020] [Accepted: 03/06/2020] [Indexed: 12/18/2022] Open
Abstract
Melatonin influences physiological processes such as promoting proliferation and regulating cell development and function, and its effects on chicken Sertoli cells are unknown. Therefore, we investigated the effects of melatonin on cell proliferation and its underlying mechanisms in chicken Sertoli cells. Chicken Sertoli cells were exposed to varying melatonin concentrations (1, 10, 100, and 1000 nM), and the melatonin-induced effects on cell proliferation were measured by Cell Counting Kit 8 (CCK-8), 5-ethynyl-2'-deoxyuridine (EdU), real-time qPCR, and western blotting. We found that 1000 nM melatonin significantly (p < 0.05) promoted cell proliferation in chicken Sertoli cells. Furthermore, melatonin significantly (p < 0.05) increased the expression of inhibin alpha subunit (INHA), and the silencing of INHA reversed the melatonin-induced effects on Sertoli cell proliferation. We also found that melatonin activates the extracellular-regulated protein kinase (ERK) signaling pathway. To explore the role of the ERK signaling pathway in melatonin-induced cell proliferation, PD98059 (an inhibitor of EKR1/2) was used to pre-treat chicken Sertoli cells. The melatonin-induced proliferation of chicken Sertoli cells was reversed by PD98059, with decreased cell viability, weakened cell proliferation, and down-regulated expression of the proliferating cell nuclear antigen (PCNA), cyclin D1 (CCND1) and INHA. In summary, our results indicate that melatonin promotes the proliferation of chicken Sertoli cells by activating the ERK/inhibin alpha subunit signaling pathway.
Collapse
|
5
|
Xu H, Khan A, Zhao S, Wang H, Zou H, Pang Y, Zhu H. Effects of Inhibin A on Apoptosis and Proliferation of Bovine Granulosa Cells. Animals (Basel) 2020; 10:ani10020367. [PMID: 32102430 PMCID: PMC7071129 DOI: 10.3390/ani10020367] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 02/18/2020] [Accepted: 02/21/2020] [Indexed: 11/16/2022] Open
Abstract
Inhibin A is well known for its inhibitory properties against follicle-stimulating hormone (FSH), released through a pituitary-gonadal negative feedback loop to regulate follicular development. Ovarian folliculogenesis, hormonal biosynthesis, and gametogenesis are dependent on inhibins, playing vital roles in promoting or inhibiting cell proliferation. The present study explored the physiological and molecular response of bovine granulosa cells (GCs) to different concentrations of inhibin A in vitro. We treated the primary GCs isolated from ovarian follicles (3-6 mm) with different levels of inhibin A (20, 50, and 100 ng/mL) along with the control (0 ng/mL) for 24 h. To evaluate the impact of inhibin A on GCs, several in vitro cellular parameters, including cell apoptosis, viability, cell cycle, and mitochondrial membrane potential (MMP) were detected. Besides, the transcriptional regulation of pro-apoptotic (BAX, Caspase-3) and cell proliferation (PCNA, CyclinB1) genes were also quantified. The results indicated a significant (p < 0.05) increase in the cell viability in a dose-dependent manner of inhibin A. Likewise, MMP was significantly (p < 0.05) enhanced when GCs were treated with high doses (50, 100 ng/mL) of inhibin A. Furthermore, inhibin A dose (100 ng/mL) markedly improved the progression of the G1 phase of the cell cycle and increased the cell number in the S phase, which was supported by the up-regulation of the proliferating cell nuclear antigen PCNA (20, 50, and 100ng/mL) and CyclinB (100 ng/mL) genes. In addition, higher doses of inhibin A (50 and 100 ng/mL) significantly (p < 0.05) decreased the apoptotic rate in GCs, which was manifested by down regulating BAX and Caspase-3 genes. Conclusively, our study presented a worthy strategy for the first time to characterize the cellular adaptation of bovine GCs under different concentrations of inhibin A. Our results conclude that inhibin A is a broad regulatory marker in GCs by regulating apoptosis and cellular progression.
Collapse
Affiliation(s)
- Huitao Xu
- Embryo Biotechnology and Reproduction Laboratory, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (H.X.); (S.Z.); (H.W.); (H.Z.); (Y.P.)
| | - Adnan Khan
- Key Laboratory of Animal Genetics, Breeding, and Reproduction, MARA, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China;
| | - Shanjiang Zhao
- Embryo Biotechnology and Reproduction Laboratory, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (H.X.); (S.Z.); (H.W.); (H.Z.); (Y.P.)
| | - Huan Wang
- Embryo Biotechnology and Reproduction Laboratory, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (H.X.); (S.Z.); (H.W.); (H.Z.); (Y.P.)
| | - Huiying Zou
- Embryo Biotechnology and Reproduction Laboratory, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (H.X.); (S.Z.); (H.W.); (H.Z.); (Y.P.)
| | - Yunwei Pang
- Embryo Biotechnology and Reproduction Laboratory, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (H.X.); (S.Z.); (H.W.); (H.Z.); (Y.P.)
| | - Huabin Zhu
- Embryo Biotechnology and Reproduction Laboratory, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (H.X.); (S.Z.); (H.W.); (H.Z.); (Y.P.)
- Correspondence: ; Tel.: +86-010-62895971
| |
Collapse
|
6
|
Analysis of Expression and Single Nucleotide Polymorphisms of INHA Gene Associated with Reproductive Traits in Chickens. BIOMED RESEARCH INTERNATIONAL 2019; 2019:8572837. [PMID: 31485447 PMCID: PMC6702802 DOI: 10.1155/2019/8572837] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 07/02/2019] [Accepted: 07/15/2019] [Indexed: 12/15/2022]
Abstract
Inhibin α (INHA) is a candidate gene controlling ovulation in poultry. As the functional center of inhibin, INHA is a molecular marker associated with egg-laying performance. The objective of the current study was to analyze the expression differences of INHA in reproductive system and single nucleotide polymorphisms (SNPs) associations with reproductive traits in chickens. A total of 260 LuHua chickens (barred-feather chicken) were adopted. Twelve SNPs were detected in INHA gene. Among the exonic SNPs, three (g. 22177991A>G, g. 22178249G>C, and g. 22178414G>A) were missense mutations, resulting in the amino acid substitutions Val→Ala, Ala→Gly, and Ala→Gly, respectively. Four SNPs in the 3' untranslated region of INHA were predicted to either disturb or create microRNA-target interactions. Five SNPs (g. 22176870T>C, g. 22177100T>C, g. 22177149T>C, g. 22177991A>G, and g. 22178975G>A) were significantly associated with the number of eggs at 300 d of age (EN) (P < 0.05). Birds carrying GA genotype exhibited more EN than those with AA genotype (P < 0.01). In addition, quantitative real-time PCR revealed that INHA is mainly expressed in follicles on d 300 in chickens. Firstly, INHA expression increased and then decreased. The highest INHA mRNA abundance was found in the fifth largest preovulatory follicle (F5) (P < 0.01). In the prehierarchical follicles, INHA mRNA expression increased dramatically in small yellow follicles (SYF) (P < 0.01). Western blotting analysis showed that the INHA protein expression profile in the follicle was similar to its mRNA counterpart with greater expression in F5 and SYF follicles and lowest expression in F1 follicles (P < 0.05). These results suggest that INHA is a potential candidate gene improving reproductive traits in chickens.
Collapse
|
7
|
Wang F, Chen L, Chen S, Deng L, Tian M, Zheng B, Li C, Zhou X. Association of RBP-4 gene polymorphisms with follicular cysts in large white sows. Reprod Domest Anim 2019; 54:972-978. [PMID: 31025395 DOI: 10.1111/rda.13447] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Accepted: 04/20/2019] [Indexed: 11/30/2022]
Abstract
Follicular cysts, which is a common infertility disease, can cause financial losses in pig breeding programmes. The pathogenesis and mechanisms of the formation of follicular cysts are not understood clearly. In our previous study, the concentration of retinol-binding protein 4 (RBP-4) in the follicular fluid (FF) of the ovary with follicular cysts was found to be significantly higher than that of normal ovary, thereby suggesting that RBP-4 may be a candidate biomarker for porcine follicular cysts. To study the association of RBP-4 and follicular cysts further, we detected the polymorphisms of the RBP-4 gene and the presence of follicular cysts by PCR-Restriction fragment length polymorphism (RFLP) assay. In this study, we screened the mutations of RBP-4 gene in 79 sows with follicular cysts and 100 normal sows without cysts. Results showed that +249-63G>C polymorphisms were significantly associated with follicular cysts, and sows with CC genotype in RBP-4 gene had a high risk of developing follicular cysts. Hence, our findings further proved that RBP-4 may be a novel biomarker for follicular cysts, which may be valuable for the diagnosis of follicular cysts and molecular breeding of pigs.
Collapse
Affiliation(s)
- Fengge Wang
- College of Animal Sciences, Jilin University, Changchun, China
| | - Lu Chen
- College of Animal Sciences, Jilin University, Changchun, China
| | - Shuxiong Chen
- College of Animal Sciences, Jilin University, Changchun, China
| | - Liang Deng
- College of Animal Sciences, Jilin University, Changchun, China
| | - Meng Tian
- College of Animal Sciences, Jilin University, Changchun, China
| | - Biaobiao Zheng
- College of Animal Sciences, Jilin University, Changchun, China
| | - Chunjin Li
- College of Animal Sciences, Jilin University, Changchun, China
| | - Xu Zhou
- College of Animal Sciences, Jilin University, Changchun, China
| |
Collapse
|
8
|
Li W, Li C, Chen S, Sun L, Li H, Chen L, Zhou X. Effect of inhibin A on proliferation of porcine granulosa cells in vitro. Theriogenology 2018; 114:136-142. [DOI: 10.1016/j.theriogenology.2018.03.034] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Revised: 03/20/2018] [Accepted: 03/20/2018] [Indexed: 02/06/2023]
|
9
|
Wang H, Chen L, Jiang Y, Gao S, Chen S, Zheng X, Liu Z, Zhao Y, Li H, Yu J, Wang F, Liu Y, Li C, Zhou X. Association of gene polymorphisms of estrogen receptor, follicle-stimulating hormone β and leptin with follicular cysts in Large White sows. Theriogenology 2017; 103:143-148. [DOI: 10.1016/j.theriogenology.2017.03.030] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Revised: 03/13/2017] [Accepted: 03/14/2017] [Indexed: 12/24/2022]
|