1
|
Thongkham M, Hongsibsong S, Mekchay S, Sathanawongs A, Paitoon P, Saenjaiban A, Satsook A, Jantanasakulwong K, Rachtanapun P, Xu ZL, Sringarm K. Revolutionizing sexed sorting sperm using scFv antibodies combined with microbeads for porcine sexed semen. Int J Biol Macromol 2025; 308:142477. [PMID: 40154706 DOI: 10.1016/j.ijbiomac.2025.142477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 03/20/2025] [Accepted: 03/22/2025] [Indexed: 04/01/2025]
Abstract
This study aimed to evaluate porcine sperm sex selection using scFv antibodies combined with magnetic-activated cell sorting (MACS) to optimize X/Y sperm separation while maintaining essential sperm quality parameters, including viability, motility, membrane integrity, and apoptosis, with the goal of developing a novel method for swine sexing technology. The H4L4 scFv antibody, at a concentration of 1 mg/mL, effectively bound to PLA microbeads (HL-beads), achieving separation efficiencies of 75.4 ± 2.30 % for X-sperm and 78.6 ± 1.94 % for Y-sperm. FTIR confirmed the binding of H4L4 scFv to microbead carboxylic acid groups, and SEM verified sperm binding. In quality assessments, the X-enriched fraction (XF) presented a sperm quality comparable to that of conventional semen (CONV) and the negative control (NC). However, the Y-enriched fraction (YF) was lower in quality than the other groups were on Day 3 of storage. Apoptosis analysis revealed no significant difference in the number of necrotic cells among the XF, CONV, and NC groups. The XF group achieved a 76.1 % enriched X-sperm ratio, whereas the YF group achieved a 78.4 % enriched Y-sperm ratio. This method enhances the X-sperm proportion in the XF group with an acceptable quality for farm applications. These results demonstrate the potential of HL-beads for porcine sperm sexing, offering a promising approach for improving sex ratios in swine production.
Collapse
Affiliation(s)
- Marninphan Thongkham
- Livestock Innovative and Biocirculation Laboratory, Department of Animal and Aquatic Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Surat Hongsibsong
- School of Health Sciences Research, Research Institute for Health Sciences, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Supamit Mekchay
- Livestock Innovative and Biocirculation Laboratory, Department of Animal and Aquatic Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Anucha Sathanawongs
- Department of Veterinary Biosciences and Veterinary Public Health, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai 50100, Thailand
| | - Phanuwit Paitoon
- Livestock Innovative and Biocirculation Laboratory, Department of Animal and Aquatic Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Aphisit Saenjaiban
- Doctor of Philosophy Program in Nanoscience and Nanotechnology (International Program/Interdisciplinary), Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Apinya Satsook
- Office of Research Administration, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Kittisak Jantanasakulwong
- Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50200, Thailand; Center of Excellence in Agro Bio-Circular-Green Industry (Agro BCG), Chiang Mai University, Chiang Mai 50100, Thailand
| | - Pornchai Rachtanapun
- Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50200, Thailand; Center of Excellence in Agro Bio-Circular-Green Industry (Agro BCG), Chiang Mai University, Chiang Mai 50100, Thailand
| | - Zhen-Lin Xu
- Guangdong Provincial Key Laboratory of Food Quality and Safety, South China Agricultural University, Guangzhou 510642, China
| | - Korawan Sringarm
- Livestock Innovative and Biocirculation Laboratory, Department of Animal and Aquatic Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai, 50200, Thailand; Center of Excellence in Agro Bio-Circular-Green Industry (Agro BCG), Chiang Mai University, Chiang Mai 50100, Thailand.
| |
Collapse
|
2
|
Leme LDO, Carvalho JO, Mendes CM, Assumpção MEOD, Caetano AR, Franco MM, Dode MAN. Impact of sperm sex sorting on sperm quality and in vitro embryo production in bovine. Anim Reprod Sci 2024; 270:107604. [PMID: 39332062 DOI: 10.1016/j.anireprosci.2024.107604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 09/12/2024] [Accepted: 09/16/2024] [Indexed: 09/29/2024]
Abstract
Increasing evidence suggests that environmental exposures can modify epigenetic marks in the germline, leading to the transmission of abnormal post-fertilization sperm epigenetic indicators and affecting embryonic development. Given the pivotal role of sperm cells in determining embryo quality, there is growing interest in understanding the potential effects of sperm sex sorting on embryo quality. This study aimed to investigate the impact of bovine sperm sexing on in vitro embryo production (IVP) and to associate molecular aspects of embryos analysis. Frozen semen samples from five Nellore bulls were used, with each bull contributing unsexed sperm (conventional semen - CV treatment) and female and male sexed sperm pooled after thawing (SX treatment). First, semen quality was assessed, including motility, morphology, acrosome integrity, and chromatin integrity to denaturation. Then, IVP was carried out, focusing on embryonic production and developmental kinetics. In the third experiment, embryo quality was evaluated by examining the gene expression of key markers (OCT4, NANOG, DNMT3A, TET1, and Fematrin-1) and the methylation pattern of the Satellite-1 and α-Satellite genes in blastocysts. Differences between CV and SX semen were only observed in motility, which was lower in SX compared with CV (P < 0.05). Although cleavage was similar, the SX groups showed lower blastocyst production than CV (P < 0.05). Of the genes evaluated, only NANOG showed high expression in the CV blastocysts compared with the SX blastocysts, but the methylation pattern revealed no differences. In conclusion, sex sorting markedly affects sperm motility and in vitro embryo production but showed no significant impact on embryo quality.
Collapse
Affiliation(s)
- Ligiane de Oliveira Leme
- UFES, Universidade Federal do Espírito Santo - Alto Universitario, S/N - Guararema, Alegre, ES 29500-000, Brazil
| | - José Oliveira Carvalho
- UFES, Universidade Federal do Espírito Santo - Alto Universitario, S/N - Guararema, Alegre, ES 29500-000, Brazil
| | - Camilla Motta Mendes
- USP, Universidade de São Paulo, Av. Prof. Dr. Orlando Marques de Paiva, 87 - Butantã, São Paulo, SP 05508-900, Brazil
| | | | - Alexandre Rodrigues Caetano
- Embrapa Recursos Genéticos e Biotecnologia - Parque Estação Biológica, PqEB s/nº Av. W5 Norte (final) - PO Box 02372, Brasília, DF 70770-917, Brazil
| | - Maurício Machaim Franco
- Embrapa Recursos Genéticos e Biotecnologia - Parque Estação Biológica, PqEB s/nº Av. W5 Norte (final) - PO Box 02372, Brasília, DF 70770-917, Brazil
| | - Margot Alves Nunes Dode
- Embrapa Recursos Genéticos e Biotecnologia - Parque Estação Biológica, PqEB s/nº Av. W5 Norte (final) - PO Box 02372, Brasília, DF 70770-917, Brazil.
| |
Collapse
|
3
|
Singh SK, Kumar R, Mathur M, Kamboj H, Kaushik JK, Mohanty AK, Kumar S. Exploring aptamers for targeted enrichment of X sperm in bovine: unraveling selective potential. Anim Biotechnol 2024; 35:2323592. [PMID: 38770771 DOI: 10.1080/10495398.2024.2323592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Nucleic acid aptamers have been used in the past for the development of diagnostic methods against a number of targets such as bacteria, pesticides, cancer cells etc. In the present study, six rounds of Cell-SELEX were performed on a ssDNA aptamer library against X-enriched sperm cells from Sahiwal breed cattle. Sequencing was used to examine the aptamer sequences that shown affinity for sperm carrying the X chromosome in order to find any possible X-sperm-specific sequences. Out of 35 identified sequences, 14 were selected based on bioinformatics analysis like G-Score and Mfold structures. Further validation of their specificity was done via fluorescence microscopy. The interaction of biotinylated-aptamer with sperm was also determined by visualizing the binding of streptavidin coated magnetic beads on the head region of the sperm under bright field microscopy. Finally, a real-time experiment was designed for the validation of X-sperm enrichment by synthesized aptamer sequences. Among the studied sequences, aptamer 29a exhibited a higher affinity for X sperm compared to Y sperm in a mixed population of sperm cells. By using aptamer sequence 29a, we obtained an enrichment of 70% for X chromosome bearing sperm cells.
Collapse
Affiliation(s)
| | | | - Manya Mathur
- National Dairy Research Institute (ICAR), Karnal, Haryana, India
| | - Himanshu Kamboj
- Amity Institute of Biotechnology, Amity University, Noida, India
| | | | - Ashok Kumar Mohanty
- National Dairy Research Institute (ICAR), Karnal, Haryana, India
- Central Institute for Research on Cattle, Meerut, Uttar Pradesh, India
| | - Sudarshan Kumar
- National Dairy Research Institute (ICAR), Karnal, Haryana, India
| |
Collapse
|
4
|
Franko R, de Almeida Monteiro Melo Ferraz M. Exploring the potential of in vitro extracellular vesicle generation in reproductive biology. JOURNAL OF EXTRACELLULAR BIOLOGY 2024; 3:e70007. [PMID: 39238549 PMCID: PMC11375532 DOI: 10.1002/jex2.70007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 07/11/2024] [Accepted: 08/15/2024] [Indexed: 09/07/2024]
Abstract
The interest in the growing field of extracellular vesicle (EV) research highlights their significance in intercellular signalling and the selective transfer of biological information between donor and recipient cells. EV studies have provided valuable insights into intercellular communication mechanisms, signal identification and their involvement in disease states, offering potential avenues for manipulating pathological conditions, detecting biomarkers and developing drug-delivery systems. While our understanding of EV functions in reproductive tissues has significantly progressed, exploring their potential as biomarkers for infertility, therapeutic interventions and enhancements in assisted reproductive technologies remains to be investigated. This knowledge gap stems partly from the difficulties associated with large-scale EV production relevant to clinical applications. Most existing studies on EV production rely on conventional 2D cell culture systems, characterized by suboptimal EV yields and a failure to replicate in vivo conditions. This results in the generation of EVs that differ from their in vivo counterparts. Hence, this review firstly delves into the importance of EVs in reproduction to then expand on current techniques for in vitro EV production, specifically examining diverse methods of culture and the potential of bioengineering technologies to establish innovative systems for enhanced EV production.
Collapse
Affiliation(s)
- Roksan Franko
- Clinic of Ruminants, Faculty of Veterinary Medicine Ludwig-Maximilians-Universität München Oberschleißheim Germany
- Gene Center Ludwig-Maximilians-Universität München Munich Germany
| | - Marcia de Almeida Monteiro Melo Ferraz
- Clinic of Ruminants, Faculty of Veterinary Medicine Ludwig-Maximilians-Universität München Oberschleißheim Germany
- Gene Center Ludwig-Maximilians-Universität München Munich Germany
| |
Collapse
|
5
|
Nunamaker EA, Turner PV. Unmasking the Adverse Impacts of Sex Bias on Science and Research Animal Welfare. Animals (Basel) 2023; 13:2792. [PMID: 37685056 PMCID: PMC10486396 DOI: 10.3390/ani13172792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 08/30/2023] [Accepted: 08/30/2023] [Indexed: 09/10/2023] Open
Abstract
Sex bias in biomedical and natural science research has been prevalent for decades. In many cases, the female estrous cycle was thought to be too complex an issue to model for, and it was thought to be simpler to only use males in studies. At times, particularly when studying efficacy and safety of new therapeutics, this sex bias has resulted in over- and under-medication with associated deleterious side effects in women. Many sex differences have been recognized that are unrelated to hormonal variation occurring during the estrous cycle. Sex bias also creates animal welfare challenges related to animal over-production and wastage, insufficient consideration of welfare (and scientific) impact related to differential housing of male vs female animals within research facilities, and a lack of understanding regarding differential requirements for pain recognition and alleviation in male versus female animals. Although many funding and government agencies require both sexes to be studied in biomedical research, many disparities remain in practice. This requires further enforcement of expectations by the Institutional Animal Care and Use Committee when reviewing protocols, research groups when writing grants, planning studies, and conducting research, and scientific journals and reviewers to ensure that sex bias policies are enforced.
Collapse
Affiliation(s)
- Elizabeth A. Nunamaker
- Global Animal Welfare and Training, Charles River Laboratories, Wilmington, MA 01887, USA;
| | - Patricia V. Turner
- Global Animal Welfare and Training, Charles River Laboratories, Wilmington, MA 01887, USA;
- Department of Pathobiology, University of Guelph, Guelph, ON N1G 2W1, Canada
| |
Collapse
|
6
|
DEVELOPMENT OF A MICROFLUIDIC SYSTEM STRUCTURED ON A MODIFIED POLYDIMETHYLSILOXANE DEVICE FOR THE SELECTION OF BOVINE EPIDIDYMAL SPERMATOZOA. Reprod Toxicol 2022; 110:1-8. [DOI: 10.1016/j.reprotox.2022.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 02/21/2022] [Accepted: 03/12/2022] [Indexed: 11/23/2022]
|
7
|
Orsolini MF, Meyers SA, Dini P. An Update on Semen Physiology, Technologies, and Selection Techniques for the Advancement of In Vitro Equine Embryo Production: Section II. Animals (Basel) 2021; 11:ani11113319. [PMID: 34828049 PMCID: PMC8614388 DOI: 10.3390/ani11113319] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 11/09/2021] [Accepted: 11/18/2021] [Indexed: 11/21/2022] Open
Abstract
Simple Summary In order to improve fertilization and pregnancy rates within artificial insemination or in vitro fertilization techniques in horses, producers may choose to select the best sperm within an ejaculate. In this paper, we review conventional and novel methods of sperm selection. Abstract As the use of assisted reproductive technologies (ART) and in vitro embryo production (IVP) expand in the equine industry, it has become necessary to further our understanding of available semen selection techniques. This segment of our two-section review will focus on the selection of spermatozoa based on quality and sex for equine intracytoplasmic sperm injection (ICSI), as well as current and future developments in sperm sorting technologies. Ultimately, novel methods of semen selection will be assessed based on their efficacy in other species and their relevance and future application towards ARTs in the horse.
Collapse
Affiliation(s)
- Morgan F. Orsolini
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California, Davis, CA 95616, USA;
| | - Stuart A. Meyers
- Department of Anatomy, Physiology, and Cell Biology, School of Veterinary Medicine, University of California, Davis, CA 95616, USA;
| | - Pouya Dini
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California, Davis, CA 95616, USA;
- Correspondence:
| |
Collapse
|
8
|
Ogata K, Nagata MPB, Nishizono H, Yamanouchi T, Matsuda H, Ogata Y, Takeda K, Hashiyada Y, Yamashita K. In vitro survival kinetics of microfluidic-sorted bovine spermatozoa. Andrology 2020; 9:977-988. [PMID: 33305455 DOI: 10.1111/andr.12958] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 11/14/2020] [Accepted: 12/06/2020] [Indexed: 02/05/2023]
Abstract
BACKGROUND The isolation and characterization of sperm subpopulations that can achieve fertilization is a major challenge of assisted reproduction methods. We focused on the microfluidic sperm sorter as a novel tool for collecting highly motile spermatozoa from heterogeneous semen samples. OBJECTIVES This study primarily aims to obtain baseline information on sorted spermatozoa according to its characteristics and in vitro life span. MATERIALS AND METHODS Frozen-thawed bull semen was subjected to microfluidic sperm sorting using diffuser-type microfluidic sperm sorter (DMSS). After sorting, samples were collected as the sorted spermatozoa and unsorted residual spermatozoa and incubated at 37°C for subsequent evaluation. The samples were assessed at different time points (0 or 1, 6, and 24 h) in terms of motility, which was measured by computer-assisted sperm analysis (CASA), membrane integrity, mitochondrial function, and adenosine triphosphate (ATP) production after sorting (0 h). To determine the characteristics and efficiency of DMSS sorting, the sorted spermatozoa were compared with samples collected using the swim-up method, a conventional method in motile sperm selection. RESULTS A comparison between the sorted and residual spermatozoa demonstrated significantly higher motility parameters, membrane integrity, and mitochondrial function of the sorted spermatozoa until 6 h after incubation. The time course decrement of membrane and mitochondrial status were subjected to curve fitting and theoretically supported. Sperm ATP production measured immediately after sorting showed higher ATP generation of the sorted spermatozoa compared with the unsorted, frozen-thawed spermatozoa. The motility parameters and mitochondrial activity of DMSS-sorted spermatozoa were higher than the swim-up-collected spermatozoa (p < 0.05). DISCUSSION AND CONCLUSION These results indicate that DMSS sorting can strictly select highly motile spermatozoa with the ability to maintain its membrane integrity and mitochondrial function related to ATP production. We speculate that the device that is able to sort high-quality spermatozoa can have great potential in assisted reproduction.
Collapse
Affiliation(s)
- Kazuko Ogata
- National Livestock Breeding Center (NLBC), Fukushima, Japan.,National Agriculture and Food Research Organization (NARO), Ibaraki, Japan
| | - Maria Portia B Nagata
- Advanced Manufacturing Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Saga, Japan
| | - Hirofumi Nishizono
- Life Science Research Center, University of Toyama, Toyama, Japan.,Max Planck Florida Institute for Neuroscience, Jupiter, FL, USA
| | | | - Hideo Matsuda
- National Livestock Breeding Center (NLBC), Fukushima, Japan
| | - Yuki Ogata
- National Livestock Breeding Center (NLBC), Fukushima, Japan
| | - Kumiko Takeda
- National Agriculture and Food Research Organization (NARO), Ibaraki, Japan
| | - Yutaka Hashiyada
- National Livestock Breeding Center (NLBC), Fukushima, Japan.,Ishikawa Prefectural University, Ishikawa, Japan
| | - Kenichi Yamashita
- Sensing System Research Center, National Institute of Advanced Industrial Science and Technology (AIST), Saga, Japan
| |
Collapse
|
9
|
Hansen PJ. The incompletely fulfilled promise of embryo transfer in cattle-why aren't pregnancy rates greater and what can we do about it? J Anim Sci 2020; 98:skaa288. [PMID: 33141879 PMCID: PMC7608916 DOI: 10.1093/jas/skaa288] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 08/27/2020] [Indexed: 12/11/2022] Open
Abstract
Typically, bovine embryos are transferred into recipient females about day 7 after estrus or anticipated ovulation, when the embryo has reached the blastocyst stage of development. All the biological and technical causes for failure of a female to produce a blastocyst 7 d after natural or artificial insemination (AI) are avoided when a blastocyst-stage embryo is transferred into the female. It is reasonable to expect, therefore, that pregnancy success would be higher for embryo transfer (ET) recipients than for inseminated females. This expectation is not usually met unless the recipient is exposed to heat stress or is classified as a repeat-breeder female. Rather, pregnancy success is generally similar for ET and AI. The implication is that either one or more of the technical aspects of ET have not yet been optimized or that underlying female fertility that causes an embryo to die before day 7 also causes it to die later in pregnancy. Improvements in pregnancy success after ET will depend upon making a better embryo, improving uterine receptivity, and forging new tools for production and transfer of embryos. Key to accelerating progress in improving pregnancy rates will be the identification of phenotypes or phenomes that allow the prediction of embryo competence for survival and maternal capacity to support embryonic development.
Collapse
Affiliation(s)
- Peter J Hansen
- Department of Animal Sciences, D.H. Barron Reproductive and Perinatal Biology Research Program, and Genetics Institute, University of Florida, Gainesville, FL
| |
Collapse
|
10
|
Abdel-Ghani MA, El-Sherry T, Mahmoud G, Nagano M. Implications of ram sperm rheotaxis analysed by microfluidics for fertility. Reprod Domest Anim 2020; 55:1541-1547. [PMID: 32780908 DOI: 10.1111/rda.13804] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Revised: 06/30/2020] [Accepted: 08/07/2020] [Indexed: 12/16/2022]
Abstract
Rheotaxis of sperm using a microfluidic device was explored in human, mice and bull. However, the rheotaxis of ram sperm and its role in fertility are unknown. Herein, we described the sperm rheotaxis in ram using microfluidic devices and focused on rheotaxis as potential markers of in vivo fertility. Computer-assisted sperm analysis (CASA) with controlled flow velocity was used to explore the kinematic parameters of sperm, total motility and positive rheotaxis (PR). The percentage of PR was defined as the number of PR sperm cells over the number of motile sperm cells. Then, according to the percentage of PR sperm, rams were classified into two groups; sperm with ≥40% PR and <40% PR, although the two ram groups showed similar total motility and kinematic values of sperm evaluated by CASA (p > .05). Two groups of rams mated one hundred thirty ewes naturally (10 ewes/ram). In the results, the pregnancy rate was higher in ≥40% PR (94.4%) than in <40% PR (42.5%, p < .05) after natural mating. Besides, the pregnancy loss was higher in <40% PR (33.3%) than in >40% PR group (8.1%, p < .05). In conclusion, the PR examination in semen can contribute to evaluate the reproductive performance of ram that will provide valuable insights into the semen evaluation.
Collapse
Affiliation(s)
- Mohammed A Abdel-Ghani
- Department of Theriogenology, Faculty of Veterinary Medicine, Assuit University, Assuit, Egypt
| | - Timor El-Sherry
- Department of Theriogenology, Faculty of Veterinary Medicine, Assuit University, Assuit, Egypt
| | - Gamal Mahmoud
- Department of Animal Production, Faculty of Agriculture, Assiut University, Assiut, Egypt
| | - Masashi Nagano
- Laboratory of Animal Reproduction, Department of Animal Science, School of Veterinary Medicine, Kitasato University, Towada, Japan
| |
Collapse
|
11
|
Hamacher T, Berendsen JTW, Kruit SA, Broekhuijse MLWJ, Segerink LI. Effect of microfluidic processing on the viability of boar and bull spermatozoa. BIOMICROFLUIDICS 2020; 14:044111. [PMID: 32774586 PMCID: PMC7402706 DOI: 10.1063/5.0013919] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 07/07/2020] [Indexed: 06/11/2023]
Abstract
The use of microfluidics in artificial reproductive technologies for manipulation or assessment of spermatozoa is unique in the sense that it is not always an end point measurement and the sample may be used afterward. During microfluidic processing, spermatozoa are exposed to shear stress, which may harm viability and functioning of spermatozoa. The shear stresses during general microfluidic processing steps were calculated and compared to estimated shear stresses during ejaculation. The viability of boar and bull spermatozoa after microfluidic processing was studied and compared to the typical handling method (centrifugation) and to a control (the sample in a tube at the same temperature). The boar spermatozoa showed a small but significant decrease in viability of 6% after microfluidic handling. Bull spermatozoa proved to be less susceptible to shear stress and were not significantly affected by microfluidic processing. These data indicate that the impact of microfluidic processing on the viability of boar and bull spermatozoa is less than the literature values reported for flow cytometry and comparable to the impact of centrifugation.
Collapse
Affiliation(s)
- Tanja Hamacher
- BIOS Lab on a Chip Group, MESA+ Institute for Nanotechnology, Technical Medical Centre, Faculty of Electrical Engineering, Mathematics and Computer Science, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
| | - Johanna T. W. Berendsen
- BIOS Lab on a Chip Group, MESA+ Institute for Nanotechnology, Technical Medical Centre, Faculty of Electrical Engineering, Mathematics and Computer Science, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
| | - Stella A. Kruit
- BIOS Lab on a Chip Group, MESA+ Institute for Nanotechnology, Technical Medical Centre, Faculty of Electrical Engineering, Mathematics and Computer Science, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
| | | | - Loes I. Segerink
- BIOS Lab on a Chip Group, MESA+ Institute for Nanotechnology, Technical Medical Centre, Faculty of Electrical Engineering, Mathematics and Computer Science, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
| |
Collapse
|
12
|
Umezu K, Yajima R, Hiradate Y, Yanai R, Numabe T, Hara K, Oikawa T, Tanemura K. Improvement in blastocyst quality by neurotensin signaling via its receptors in bovine spermatozoa during in vitro fertilization. J Reprod Dev 2019; 65:147-153. [PMID: 30662011 PMCID: PMC6473113 DOI: 10.1262/jrd.2018-147] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Previously, we reported that neurotensin (NT), which is expressed in the uterus and oviduct, enhanced bovine sperm capacitation and acrosome reactions. As NT mRNA expression in bovine
oviducts increases dramatically in the follicular phase, we hypothesized that NT modulates fertilization and subsequent conception in cattle. The objective of this study was to evaluate the
effect of NT on embryo development and blastocyst quality. The rate of embryo cleavage was significantly increased by the addition of NT to the fertilization medium. Furthermore, the total
number of cells and numbers of cells in the inner cell mass of blastocysts were significantly increased by NT during in vitro fertilization (IVF). These results suggested
that NT enhanced the efficiency of early bovine embryo development and blastocyst quality. The expression of NT receptors (NTRs) in sperm, testes, oocytes, and cumulus cells was evaluated to
determine whether NT acted via NTRs in sperm alone or in both male and female reproductive cells during IVF. Immunocytochemistry and reverse transcription polymerase chain reaction revealed
that NTR1 and NTR2 were expressed in sperm and testes, but not in oocytes and cumulus cells. We propose that NT selectively acts upon sperm via NTR1 and NTR2 during IVF to improve the
cleavage rate and quality of blastocysts, which are important determinants of sperm quality for successful conception. This research supports our hypothesis that NT acts as a key modulator
of fertilization and conception in cattle. Further studies are necessary to apply our findings to the industrial framework of bovine reproduction.
Collapse
Affiliation(s)
- Kohei Umezu
- Laboratory of Animal Reproduction and Development, Graduate School of Agricultural Science, Tohoku University, Miyagi 980-0845, Japan
| | - Risa Yajima
- Miyagi Prefectural Livestock Experiment Station, Miyagi 989-6445, Japan
| | - Yuuki Hiradate
- Laboratory of Animal Reproduction and Development, Graduate School of Agricultural Science, Tohoku University, Miyagi 980-0845, Japan
| | - Rin Yanai
- Laboratory of Animal Reproduction and Development, Graduate School of Agricultural Science, Tohoku University, Miyagi 980-0845, Japan
| | - Takashi Numabe
- Miyagi Agricultural Development Corporation, Miyagi 981-0914, Japan
| | - Kenshiro Hara
- Laboratory of Animal Reproduction and Development, Graduate School of Agricultural Science, Tohoku University, Miyagi 980-0845, Japan
| | - Toshinori Oikawa
- Miyagi Prefectural Livestock Experiment Station, Miyagi 989-6445, Japan
| | - Kentaro Tanemura
- Laboratory of Animal Reproduction and Development, Graduate School of Agricultural Science, Tohoku University, Miyagi 980-0845, Japan
| |
Collapse
|
13
|
Huang HY, Lai YL, Yao DJ. Dielectrophoretic Microfluidic Device for in Vitro Fertilization. MICROMACHINES 2018; 9:E135. [PMID: 30424069 PMCID: PMC6187277 DOI: 10.3390/mi9030135] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2017] [Revised: 03/14/2018] [Accepted: 03/15/2018] [Indexed: 11/20/2022]
Abstract
The aim of this work was to create a microfluidic platform that uses in vitro fertilization (IVF) and avoids unnecessary damage to oocytes due to the dielectrophoretic force manipulation of the sperms and oocytes that occurs in a traditional IVF operation. The device from this research can serve also to decrease medium volumes, as well as the cost of cell culture under evaporation, and to prevent unnecessary risk in intracytoplasmic sperm injection (ICSI). To decrease the impact and destruction of the oocyte and the sperm, we adopted a positive dielectrophoretic force to manipulate both the sperms and the oocyte. The mouse oocytes were trapped with a positive dielectrophoretic (p-DEP) force by using Indium Tin Oxide (ITO)-glass electrodes; the ITO-glass electrode chip was fabricated by wet etching the ITO-glass. The polydimethylsiloxane (PDMS) flow-focusing microfluidic device was used to generate microdroplets of micrometer size to contain the zygotes. The volume of the microdroplets was controlled by adjusting the flow rates of both inlets for oil and the DEP buffer. As a result, the rate of fertilization was increased by about 5% beyond that of the DEP treatment in traditional IVF, and more than 20% developed to the blastocyst stage with a low sperm-oocyte ratio.
Collapse
Affiliation(s)
- Hong-Yuan Huang
- Department of Obstetrics and Gynecology, Chang Gung Memorial Hospital, 5, Fu-Hsing Street, Kwei-Shan, Tao-Yuan 333, Taiwan.
- Department of Obstetrics and Gynecology, Chang Gung University and College of Medicine, 259, Wen-Hua 1st Road, Kwei-Shan, Tao-Yuan 333, Taiwan.
| | - Yun-Li Lai
- Department of Power Mechanical Engineering, National Tsing Hua University, 101, Section 2, Kuang-Fu Road, Hsinchu 30013, Taiwan.
- Institute of NanoEngineering and MicroSystems, National Tsing Hua University, 101, Section 2, Kuang-Fu Road, Hsinchu 30013, Taiwan.
| | - Da-Jeng Yao
- Department of Power Mechanical Engineering, National Tsing Hua University, 101, Section 2, Kuang-Fu Road, Hsinchu 30013, Taiwan.
- Institute of NanoEngineering and MicroSystems, National Tsing Hua University, 101, Section 2, Kuang-Fu Road, Hsinchu 30013, Taiwan.
| |
Collapse
|
14
|
Feugang JM. Novel agents for sperm purification, sorting, and imaging. Mol Reprod Dev 2017; 84:832-841. [PMID: 28481043 DOI: 10.1002/mrd.22831] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2016] [Accepted: 05/03/2017] [Indexed: 01/15/2023]
Abstract
The stringent selection of viable spermatozoa ensures the transmission of high-quality genetic material to the egg during fertilization. Sperm heterogeneity within or between ejaculates and between males obliges varied post-collection handling of semen to assure satisfactory fertility rates. The current techniques used to assess sperm generally detect non-viable and non-fertilizing gametes in the ejaculate, but do not permit the investigation of semen for improved fertility outcomes. Advances in technology, however, have spurred the search for new approaches to enrich semen with high-quality spermatozoa and to track intra-uterine sperm migration. This review highlights the current and future methodologies used for sperm labeling, selection, tracking, and imaging, with specific emphasis on the recent influence of nanotechnology.
Collapse
Affiliation(s)
- Jean M Feugang
- Department of Animal and Dairy Sciences, Mississippi State University, Mississippi State, Mississippi
| |
Collapse
|
15
|
Zhao G, Fu J. Microfluidics for cryopreservation. Biotechnol Adv 2017; 35:323-336. [PMID: 28153517 PMCID: PMC6236673 DOI: 10.1016/j.biotechadv.2017.01.006] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Revised: 01/23/2017] [Accepted: 01/25/2017] [Indexed: 11/19/2022]
Abstract
Cryopreservation has utility in clinical and scientific research but implementation is highly complex and includes labor-intensive cell-specific protocols for the addition/removal of cryoprotective agents and freeze-thaw cycles. Microfluidic platforms can revolutionize cryopreservation by providing new tools to manipulate and screen cells at micro/nano scales, which are presently difficult or impossible with conventional bulk approaches. This review describes applications of microfluidic tools in cell manipulation, cryoprotective agent exposure, programmed freezing/thawing, vitrification, and in situ assessment in cryopreservation, and discusses achievements and challenges, providing perspectives for future development.
Collapse
Affiliation(s)
- Gang Zhao
- Center for Biomedical Engineering, Department of Electronic Science and Technology, University of Science and Technology of China, Hefei 230027, Anhui, PR China.
| | - Jianping Fu
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI 48109, USA; Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA; Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA; Michigan Center for Integrative Research in Critical Care, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
16
|
Li J, Ning B, Cao X, Luo Y, Guo L, Wei G, Liu S, Zhang Y, Zhang A, Wu R, Li Y. Separation of motile sperm for in vitro fertilization from frozen-thawed bull semen using progesterone induction on a microchip. Anim Reprod Sci 2016; 172:52-9. [DOI: 10.1016/j.anireprosci.2016.07.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2016] [Revised: 06/28/2016] [Accepted: 07/03/2016] [Indexed: 01/03/2023]
|