1
|
Hirakawa T, Nakabayashi K, Ito N, Hata K, Imi S, Shibata M, Urushiyama D, Miyata K, Yotsumoto F, Yasunaga S, Baba T, Miyamoto S. Transwell Culture with Adipose Tissue-Derived Stem Cells and Fertilized Eggs Mimics the In Vivo Development of Fertilized Eggs to Blastocysts in the Fallopian Tube: An Animal Study. Antioxidants (Basel) 2024; 13:704. [PMID: 38929143 PMCID: PMC11200376 DOI: 10.3390/antiox13060704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 06/03/2024] [Accepted: 06/06/2024] [Indexed: 06/28/2024] Open
Abstract
Many countries, including Japan, are experiencing declining birth rates. Assisted reproductive technologies have consistently demonstrated good results in resolving infertility. Although the development of fertilized eggs into blastocysts has been recognized as a crucial step in assisted reproductive technologies, the involved mechanisms are currently unclear. Here, we established a new culture system for the in vitro development of fertilized eggs into blastocysts. In the Transwell culture system, the rate of blastocysts hatching from fertilized eggs cultured with adipose-derived stem cells (ASCs) was significantly higher than that of blastocysts cultured only with fertilized eggs. Gene ontology analysis revealed that the developed blastocysts displayed essential gene expression patterns in mature blastocysts. Additionally, when cultured with 3rd-passage ASCs, the developed blastocysts expressed the core genes for blastocyst maturation and antioxidant properties compared to those cultured only with fertilized eggs or cultured with 20th-passage ASCs. These results suggest that the Transwell culture system may imitate the in vivo tubal culture state for fertilized eggs. Exosomes derived from stem cells with stemness potential play a powerful role in the development of blastocysts from fertilized eggs. Additionally, the exosomes expressed specific microRNAs; therefore, the Transwell culture system resulted in a higher rate of pregnancy. In future, the extraction of their own extracellular vesicles from the culture medium might contribute to the development of novel assisted reproductive technologies.
Collapse
Affiliation(s)
- Toyofumi Hirakawa
- Department of Obstetrics & Gynecology, Faculty of Medicine, Fukuoka University, Fukuoka 814-0180, Japan; (T.H.); (S.I.); (M.S.); (D.U.); (K.M.); (F.Y.)
| | - Kazuhiko Nakabayashi
- Department of Maternal-Fetal Biology, National Research Institute for Child Health and Development, Tokyo 157-8535, Japan; (K.N.); (N.I.); (K.H.)
| | - Noriko Ito
- Department of Maternal-Fetal Biology, National Research Institute for Child Health and Development, Tokyo 157-8535, Japan; (K.N.); (N.I.); (K.H.)
| | - Kenichiro Hata
- Department of Maternal-Fetal Biology, National Research Institute for Child Health and Development, Tokyo 157-8535, Japan; (K.N.); (N.I.); (K.H.)
| | - Shiori Imi
- Department of Obstetrics & Gynecology, Faculty of Medicine, Fukuoka University, Fukuoka 814-0180, Japan; (T.H.); (S.I.); (M.S.); (D.U.); (K.M.); (F.Y.)
| | - Mami Shibata
- Department of Obstetrics & Gynecology, Faculty of Medicine, Fukuoka University, Fukuoka 814-0180, Japan; (T.H.); (S.I.); (M.S.); (D.U.); (K.M.); (F.Y.)
| | - Daichi Urushiyama
- Department of Obstetrics & Gynecology, Faculty of Medicine, Fukuoka University, Fukuoka 814-0180, Japan; (T.H.); (S.I.); (M.S.); (D.U.); (K.M.); (F.Y.)
| | - Kohei Miyata
- Department of Obstetrics & Gynecology, Faculty of Medicine, Fukuoka University, Fukuoka 814-0180, Japan; (T.H.); (S.I.); (M.S.); (D.U.); (K.M.); (F.Y.)
| | - Fusanori Yotsumoto
- Department of Obstetrics & Gynecology, Faculty of Medicine, Fukuoka University, Fukuoka 814-0180, Japan; (T.H.); (S.I.); (M.S.); (D.U.); (K.M.); (F.Y.)
| | - Shin’ichiro Yasunaga
- Department of Biochemistry, Faculty of Medicine, Fukuoka University, Fukuoka 814-0180, Japan;
| | - Tsukasa Baba
- Department of Obstetrics & Gynecology, School of Medicine, Iwate Medical University, Morioka 028-3694, Japan;
| | - Shingo Miyamoto
- Department of Obstetrics & Gynecology, School of Medicine, Iwate Medical University, Morioka 028-3694, Japan;
- Cybele Corporation Limited, 2-128-14 Sugukita, Kasugashi 816-0864, Japan
| |
Collapse
|
2
|
Qu Y, Zhang S, Mu D, Luan J. Effects of Age on the Biological Properties of Cryopreserved Adipose-Derived Stem Cells and ASC-Enriched Fat Grafts. Aesthetic Plast Surg 2023; 47:2734-2744. [PMID: 37563434 DOI: 10.1007/s00266-023-03521-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Accepted: 07/14/2023] [Indexed: 08/12/2023]
Abstract
BACKGROUND Donor age is an important factor affecting the biological characteristics of human adipose-derived stem cells. The aim of this study was to compare the effects of age on the biological properties of cryopreserved adipose-derived stem cells and fat survival of cell-assisted lipotransfer. METHODS Human lipoaspirates were obtained from 60 healthy female patients (aged 18-65 years) who underwent abdominal liposuction. Samples were divided into three groups according to donor age: group A, 18-29 years; group B, 30-49 years; and group C, 50-65 years. Adipose-derived stem cells were obtained by in vitro culture at the second passage and cryopreserved for 4 weeks. The cryopreserved ASCs were examined for biological characteristics, including cell proliferation, wound healing and adipogenic differentiation. Then, the fat survival of cryopreserved ASC-assisted fat transplantation was compared at different ages. RESULTS SVF viability decreased with increasing age. Moreover, there was a decline in cell proliferation and migration of ASCs with increasing age. A significant difference was found in the adipogenic differentiation of ASCs in the three groups. There were significant differences in graft retention in different age groups. ASC-assisted fat grafting was more effective in young people than in elderly people. CONCLUSIONS Honor age affects the proliferation and migration of adipose-derived stem cells but not the adipogenic differentiation potential of ASCs. Cryopreserved ASCs from younger people more effectively improved the fat survival of grafts. LEVEL OF EVIDENCE V This journal requires that authors assign a level of evidence to each article. For a full description of these Evidence-Based Medicine ratings, please refer to the Table of Contents or the online Instructions to Authors www.springer.com/00266 .
Collapse
Affiliation(s)
- Yaping Qu
- Breast Plastic and Reconstructive Surgery Center, Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 33 Badachu Road, Shijingshan District, Beijing, 100144, China
| | - Sihang Zhang
- School of Public Health, Peking University, Beijing, China
| | - Dali Mu
- Breast Plastic and Reconstructive Surgery Center, Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 33 Badachu Road, Shijingshan District, Beijing, 100144, China
| | - Jie Luan
- Breast Plastic and Reconstructive Surgery Center, Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 33 Badachu Road, Shijingshan District, Beijing, 100144, China.
| |
Collapse
|
3
|
Baouche M, Ochota M, Mermillod P, Locatelli Y, Nizanski W. Feline Wharton's jelly-derived mesenchymal stem cells as a feeder layer for oocytes maturation and embryos culture in vitro. Front Vet Sci 2023; 10:1252484. [PMID: 37869498 PMCID: PMC10590214 DOI: 10.3389/fvets.2023.1252484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 09/11/2023] [Indexed: 10/24/2023] Open
Abstract
Introduction Due to their capacity to release growth factors and cytokines, co-culture using mesenchymal stem cells has been considered a good alternative to promoting the maturation of the oocytes and the embryo's development quality in vitro in different mammalian species. In this regard, we investigated the effect of feline Wharton's jelly MSCs as feeders layer in oocyte maturation-consequently, the development of resulting embryos in co-culture. Methods Oocytes with dark cytoplasm and a few layers of cumulus cells were collected and subjected to in vitro maturation and embryo culture using commercial media with and without MSCs addition. The oocytes' nuclear maturation and the degree of cumulus expansion in different groups were assessed after 24 h; the development of the embryo was evaluated every 12 h until day eight. Results Although MSCs increased the proportion of cumulus cells oocytes exhibiting cumulus expansion, there were no significant differences in the percentage of matured oocytes (metaphase II) among the groups (p > 0.05). However, the embryo development differs significantly, with a higher cleavage, morula, and blastocyst percentage in oocytes matured with MSC co-culture conditions than in commercial media alone (p < 0.05). Also, we observed higher morula and blastocyst rates in the embryos co-cultured with MSCs during the in vitro culture (p > 0.05). Conclusion Based on our results, the co-culture with MSCs during the oocyte maturation resulted in better embryo development, as well as the MSCs addition during embryo culture returned an increased number of morula and blastocysts. Further research is needed to fully understand and optimize the use of MSCs in oocyte maturation and embryo development.
Collapse
Affiliation(s)
- Meriem Baouche
- Department of Reproduction and Clinic of Farm Animals, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| | - Małgorzata Ochota
- Department of Reproduction and Clinic of Farm Animals, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| | - Pascal Mermillod
- Physiology of Reproduction and Behaviors (PRC), INRAE, CNRS, University of Tours, Tours, France
| | - Yann Locatelli
- Physiology of Reproduction and Behaviors (PRC), INRAE, CNRS, University of Tours, Tours, France
- Museum National d’Histoire Naturelle, Réserve Zoologique de la Haute Touche, Obterre, France
| | - Wojciech Nizanski
- Department of Reproduction and Clinic of Farm Animals, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| |
Collapse
|
4
|
Peserico A, Di Berardino C, Capacchietti G, Camerano Spelta Rapini C, Liverani L, Boccaccini AR, Russo V, Mauro A, Barboni B. IVM Advances for Early Antral Follicle-Enclosed Oocytes Coupling Reproductive Tissue Engineering to Inductive Influences of Human Chorionic Gonadotropin and Ovarian Surface Epithelium Coculture. Int J Mol Sci 2023; 24:ijms24076626. [PMID: 37047595 PMCID: PMC10095509 DOI: 10.3390/ijms24076626] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/26/2023] [Accepted: 03/30/2023] [Indexed: 04/05/2023] Open
Abstract
In vitro maturation (IVM) is not a routine assisted reproductive technology (ART) for oocytes collected from early antral (EA) follicles, a large source of potentially available gametes. Despite substantial improvements in IVM in the past decade, the outcomes remain low for EA-derived oocytes due to their reduced developmental competences. To optimize IVM for ovine EA-derived oocytes, a three-dimensional (3D) scaffold-mediated follicle-enclosed oocytes (FEO) system was compared with a validated cumulus-oocyte complex (COC) protocol. Gonadotropin stimulation (eCG and/or hCG) and/or somatic cell coculture (ovarian vs. extraovarian-cell source) were supplied to both systems. The maturation rate and parthenogenetic activation were significantly improved by combining hCG stimulation with ovarian surface epithelium (OSE) cells coculture exclusively on the FEO system. Based on the data, the paracrine factors released specifically from OSE enhanced the hCG-triggering of oocyte maturation mechanisms by acting through the mural compartment (positive effect on FEO and not on COC) by stimulating the EGFR signaling. Overall, the FEO system performed on a developed reproductive scaffold proved feasible and reliable in promoting a synergic cytoplasmatic and nuclear maturation, offering a novel cultural strategy to widen the availability of mature gametes for ART.
Collapse
Affiliation(s)
- Alessia Peserico
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy
| | - Chiara Di Berardino
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy
| | - Giulia Capacchietti
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy
| | - Chiara Camerano Spelta Rapini
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy
| | - Liliana Liverani
- Institute of Biomaterials, Department of Materials Science and Engineering, Friedrich-Alexander University of Erlangen-Nuremberg, 91054 Erlangen, Germany
- DGS S.p.A., 00142 Rome, Italy
| | - Aldo Roberto Boccaccini
- Institute of Biomaterials, Department of Materials Science and Engineering, Friedrich-Alexander University of Erlangen-Nuremberg, 91054 Erlangen, Germany
| | - Valentina Russo
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy
| | - Annunziata Mauro
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy
| | - Barbara Barboni
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy
| |
Collapse
|
5
|
Anti-Oxidative Effects of Human Adipose Stem Cell Conditioned Medium with Different Basal Medium during Mouse Embryo In Vitro Culture. Animals (Basel) 2020; 10:ani10081414. [PMID: 32823702 PMCID: PMC7459530 DOI: 10.3390/ani10081414] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 08/02/2020] [Accepted: 08/04/2020] [Indexed: 01/20/2023] Open
Abstract
Simple Summary Assisted reproductive techniques, which are used to resolve various infertility problems, have advanced following the emphasis on their use. Embryos produced in vitro rather than in vivo are exposed to greater stress, with the quality of the embryos being affected by the in vitro culture conditions. To reduce oxidative stress and consequent apoptosis of embryos for successful implantation and pregnancy maintenance, the present study evaluated the anti-oxidative effect of human adipose stem cell conditioned medium (ASC-CM) with different basal medium as supplement in in vitro culture (IVC) medium for mouse preimplantation embryo. Treatment of 5% human ASC-CM based on Dulbecco′s modified Eagle′s medium (DMEM-CM) indicated an enhanced development of mouse in vitro fertilized embryo, decreased expression level of indicators for oxidative stress, and apoptosis in blastocysts. To our knowledge, this is the first study to demonstrate that DMEM-CM can be an optimal supplement during IVC to promote in vitro embryo development and the success rate of assisted reproduction with its anti-oxidative and anti-apoptotic effects. Abstract The quality of embryos produced by assisted reproductive techniques should be advanced by the improvement of in vitro culture conditions for successful implantation and pregnancy maintenance. We investigated the anti-oxidative effect of human adipose stem cell (ASC) conditioned medium with its optimal basal medium, Dulbecco′s modified Eagle′s medium (DMEM-CM), or keratinocyte serum-free medium (KSFM-CM) as supplements during in vitro culture (IVC) of in vitro fertilized mouse embryo. At first, preimplantation embryo development was evaluated in KSFM-CM and DMEM-CM supplemented cultures at various concentrations. The blastocyst (BL) and hatched BL formation rates were significantly increased in 5% DMEM-CM, while no difference was observed from KSFM-CM. Next, comparing the efficacy of KSFM-CM and DMEM-CM at the same concentration, DMEM-CM enhanced the developmental rate of 16 cells, morula, BL, and hatched BL. The expression level of reactive oxygen species decreased and that of glutathione increased in BL cultured with DMEM-CM, which confirms its anti-oxidative effect. Furthermore, apoptosis in BL cultured with DMEM-CM was reduced compared with that in KSFM-CM. This study demonstrated that the comparative effect of human ASC-CM made of two different basal media during mouse embryo IVC and anti-oxidative effect of 5% DMEM-CM was optimal to improve preimplantation embryo development.
Collapse
|
6
|
Peng Q, Alipour H, Porsborg S, Fink T, Zachar V. Evolution of ASC Immunophenotypical Subsets During Expansion In Vitro. Int J Mol Sci 2020; 21:E1408. [PMID: 32093036 PMCID: PMC7073142 DOI: 10.3390/ijms21041408] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 02/16/2020] [Accepted: 02/17/2020] [Indexed: 12/18/2022] Open
Abstract
Adipose-derived stromal/stem cells (ASCs) are currently being considered for clinical use for a number of indications. In order to develop standardized clinical protocols, it is paramount to have a full characterization of the stem cell preparations. The surface marker expression of ASCs has previously been characterized in multiple studies. However, most of these studies have provided a cross-sectional description of ASCs in either earlier or later passages. In this study, we evaluate the dynamic changes of 15 different surface molecules during culture. Using multichromatic flow cytometry, ASCs from three different donors each in passages 1, 2, 4, 6, and 8 were analyzed for their co-expression of markers associated with mesenchymal stem cells, wound healing, immune regulation, ASC markers, and differentiation capacity, respectively. We confirmed that at an early stage, ASC displayed a high heterogeneity with a plethora of subpopulations, which by culturing became more homogeneous. After a few passages, virtually all ASCs expressed CD29, CD166 and CD201, in addition to canonical markers CD73, CD90, and CD105. However, even at passage 8, there were several predominant lineages that differed with respect to the expression of CD34, CD200 and CD271. Although the significance of remaining subpopulations still needs to be elucidated, our results underscore the necessity to fully characterize ASCs prior to clinical use.
Collapse
Affiliation(s)
| | | | | | | | - Vladimir Zachar
- Department of Health Science and Technology, Regenerative Medicine Group, Aalborg University, Fredrik Bajers Vej 3B, 9220 Aalborg, Denmark; (Q.P.); (H.A.); (S.P.); (T.F.)
| |
Collapse
|
7
|
Abstract
Adipose stem cells (ASCs) are the basis of procedures intended for tissue regeneration. These cells are heterogeneous, owing to various factors, including the donor age, sex, body mass index, and clinical condition; the isolation procedure (liposuction or fat excision); the place from where the cells were sampled (body site and depth of each adipose depot); culture surface; type of medium (whether supplemented with fetal bovine serum or xeno-free), that affect the principal phenotypic features of ASCs. The features related to ASCs heterogeneity are relevant for the success of therapeutic procedures; these features include proliferation capacity, differentiation potential, immunophenotype, and the secretome. These are important characteristics for the success of regenerative tissue engineering, not only because of their effects upon the reconstruction and healing exerted by ASCs themselves, but also because of the paracrine signaling of ASCs and its impact on recipient tissues. Knowledge of sources of heterogeneity will be helpful in the standardization of ASCs-based procedures. New avenues of research could include evaluation of the effects of the use of more homo1geneous ASCs for specific purposes, the study of ASCs-recipient interactions in heterologous cell transplantation, and the characterization of epigenetic changes in ASCs, as well as investigations of the effect of the metabolome upon ASCs behavior in culture.
Collapse
|