1
|
Zhang M, Ma X, Han Y, Wang Z, Jia Z, Chen D, Qiao Z, Gao X, Zhao C, Shen Y. Optimal conditions for cryopreservation by vitrification of largemouth bass (Micropterus salmoides) embryos. Anim Reprod Sci 2024; 270:107613. [PMID: 39342692 DOI: 10.1016/j.anireprosci.2024.107613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 09/22/2024] [Accepted: 09/26/2024] [Indexed: 10/01/2024]
Abstract
The largemouth bass (Micropterus salmoides) is one of the important freshwater aquaculture species in the world. However, due to limitations on introduction scale, high-density farming, inbreeding, and species hybridization, the germplasm resources of largemouth bass face threats such as degradation and susceptibility to diseases. Therefore, it is urgent to conduct research on the conservation of its original and good germplasm resources. We optimized the conditions of cryopreservation to vitrify and revive largemouth bass embryos, including the mixing ratio of cryoprotectants, embryo stage, equilibration step and temperature, and washing regent. The results showed that the least toxic single, binary, and ternary mixed permeating cryoprotectants were PG, PM (PG: MeOH = 2:1), and PMD (PM: DMSO = 3:1), respectively. The least toxic non-permeating cryoprotectant was 5 % glucose. The optimal vitrification solution selected was PMDG (30 % PMD + 5 % glucose) with an 80.67 % survival rate of embryos. Embryos at the heartbeat stage exhibited strong tolerance to the PMDG solution, which is the optimal embryo stage for cryopreservation. During the equilibration process, either the five-step equilibration method or pre-cooling the cryoprotectant to 4°C could reduce its toxicity. During the washing process, a 0.125 mol·L-1 sucrose solution yielded the best results. Based on the optimized conditions, 650 embryos at the heartbeat stage were subjected to cryopreservation by vitrification, resulting in a total of 350 intact transparent eggs, two of which hatched successfully. The results provide a reference for further improving the efficiency of cryopreservation by vitrification of largemouth bass and other fish species.
Collapse
Affiliation(s)
- Meng Zhang
- College of Fisheries, Henan Normal University, Xinxiang 453007, China; Observation and Research Station on Water Ecosystem in Danjiangkou Reservoir of Henan Province, Nanyang 474450, China; Hebei Key Laboratory of Marine Biological Resources and Environment, Hebei Ocean and Fisheries Science Research Institute, Qinhuangdao 066200, China
| | - Xiao Ma
- College of Fisheries, Henan Normal University, Xinxiang 453007, China
| | - Yuqing Han
- College of Fisheries, Henan Normal University, Xinxiang 453007, China
| | - Zerui Wang
- College of Fisheries, Henan Normal University, Xinxiang 453007, China
| | - Zhilin Jia
- College of Fisheries, Henan Normal University, Xinxiang 453007, China
| | - Dongcai Chen
- College of Fisheries, Henan Normal University, Xinxiang 453007, China
| | - Zhigang Qiao
- College of Fisheries, Henan Normal University, Xinxiang 453007, China; Observation and Research Station on Water Ecosystem in Danjiangkou Reservoir of Henan Province, Nanyang 474450, China
| | - Xiaotian Gao
- Hebei Key Laboratory of Marine Biological Resources and Environment, Hebei Ocean and Fisheries Science Research Institute, Qinhuangdao 066200, China
| | - Chunlong Zhao
- Hebei Key Laboratory of Marine Biological Resources and Environment, Hebei Ocean and Fisheries Science Research Institute, Qinhuangdao 066200, China
| | - Yawei Shen
- College of Fisheries, Henan Normal University, Xinxiang 453007, China; Observation and Research Station on Water Ecosystem in Danjiangkou Reservoir of Henan Province, Nanyang 474450, China; Department of Biological Sciences, Clemson University, Clemson, SC, 29634, USA.
| |
Collapse
|
2
|
Castro PL, Ferraz ALJ, Patil JG, Ribeiro RP. Use of melatonin as an inhibitor of apoptotic process for cryopreservation of zebrafish (Danio rerio) embryos. BRAZ J BIOL 2021; 82:e241081. [PMID: 34105654 DOI: 10.1590/1519-6984.241081] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 11/18/2020] [Indexed: 01/31/2023] Open
Abstract
This study investigated the use of melatonin to arrest the effects of apoptosis in vitrified zebrafish (D. rerio) embryos. Dechorionated embryos at 22-24 somite-stage were divided (n = 60/treatment) into a non-vitrified (Control Group, 0 M melatonin) and vitrified treatments with 0 M (T1), 1 µM (T2) and 1 mM of melatonin (T3). For vitrified treatments, a solution methanol/propylene glycol based was used and the embryos stored in -196 °C for a week. After thaw, survival rate, scanning electron microscopy, expression of anti (bcl-2) and pro-apoptotic (bax/caspase-3) genes, reactive oxygen species (ROS) formation and DNA fragmentation analyses were performed. No live embryos were obtained from vitrified treatments, observing a rapid degeneration immediately after thawing, with the vitelline layer rupture and leakage of its content, followed by breakdown of epithelial cells and melanisation of the tissue. Regarding the apoptotic process, T3 had the highest relative gene expression, for the three genes (P < 0.05) furthermore, T2 had similar expression of pro-apoptotic genes to CG (P < 0.05). ROS formation revealed that CG presented lower percentage of embryo surface area affected (3.80 ± 0.40%) (P < 0.05), in contrast, no differences were found among the other groups. T1 was most significantly (P < 0.05) damaged by DNA fragmentation. The vitrified groups with melatonin had similar damage levels of CG (P > 0.05). The inclusion of 1 µM of melatonin in the vitrifying solution, countered the effects of apoptotic process in post-thaw embryos, suggesting its utility in cryopreserving fish embryos.
Collapse
Affiliation(s)
- P L Castro
- Universidade Estadual de Maringá - UEM, Departamento de Zootecnia, Maringá, PR, Brasil
| | - A L J Ferraz
- Universidade Estadual de Mato Grosso do Sul - UEMS, Aquidauana, MS, Brasil
| | - J G Patil
- Fisheries and Aquaculture Center, Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Australia
| | - R P Ribeiro
- Universidade Estadual de Maringá - UEM, Departamento de Zootecnia, Maringá, PR, Brasil
| |
Collapse
|
3
|
Zhang J, Tian Y, Li Z, Wu Y, Li Z, Cheng M, Wang L, Ma W, Zhai J. Optimization of vitrification factors for embryo cryopreservation of kelp grouper (Epinephelus moara). Theriogenology 2019; 142:390-399. [PMID: 31708193 DOI: 10.1016/j.theriogenology.2019.10.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 10/01/2019] [Accepted: 10/03/2019] [Indexed: 11/19/2022]
Abstract
Cryopreservation of marine fish embryos causes to severe cryogenic damage, and to date, adults have not been reared from embryos that were cryopreserved. Here, we optimized vitrification factors to improve the survival and hatching rate of kelp grouper (Epinephelus moara) embryos after cryopreservation. We screened the effects of 11 vitrification solution concentrations (25-50%) on the survival rate of embryos at four developmental stages (16S, 18S, 22S, TB). We investigated the effects of different equilibration time (25-45min) on the survival rate and the influence of vitrification solutions on embryonic volume. In addition, we tested the effects of treating embryos at five different developmental stages (4-6S, 16S, 22S, TB, HB) with different vitrification solutions (35% PMG3S and 35% PMG3T), prechilling temperature (-5 °C and 4 °C) and prechilling time. In total, 9855 embryos were cryopreserved at 10 developmental stages, from optic capsule stage to pre-hatch stage. We found that kelp grouper embryos performed best at equilibration time of 30 min. Embryos at the tail-bud stage exhibited greater tolerance to vitrification than other stages. Vitrification solutions that contained sucrose showed better survival rates compared to embryos treated with vitrification solutions containing trehalose. Pre-chilling treatment improved viability before freezing, but did not improve viability after freezing. In the most optimal condition we identified in this study, the average survival, normal development and malformation rates of cryopreserved embryos were 6.32%, 2.36% and 3.49%, and 39.85% of the surviving embryos that were cryopreserved hatched. The hatched larvae gradually died at day 12 of cultivation, where the longest surviving individuals lived for 16 days. This study provides valuable data for improving survival and hatching rate of cryopreserved grouper embryos, and provides references for further exploring techniques in fish embryo cryopreservation.
Collapse
Affiliation(s)
- Jingjing Zhang
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, China; National Demonstration Center for Experimental Fisheries Science Education (Shanghai Ocean University), Shanghai, 201306, China
| | - Yongsheng Tian
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266000, China.
| | - Zhentong Li
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, China; National Demonstration Center for Experimental Fisheries Science Education (Shanghai Ocean University), Shanghai, 201306, China
| | - Yuping Wu
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, China; College of Fisheries and Life Science, Dalian Ocean University, Dalian, 116023, China
| | - Ziqi Li
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, China; National Demonstration Center for Experimental Fisheries Science Education (Shanghai Ocean University), Shanghai, 201306, China
| | - Meiling Cheng
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, China; College of Fisheries and Life Science, Dalian Ocean University, Dalian, 116023, China
| | - Linna Wang
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266000, China
| | - Wenhui Ma
- Ming Bo Aquatic Co. Ltd., Laizhou, 261400, China
| | - Jieming Zhai
- Ming Bo Aquatic Co. Ltd., Laizhou, 261400, China
| |
Collapse
|