1
|
Zachut M, Butenko Y, Dos Santos Silva P. International Symposium on Ruminant Physiology: The involvement of the endocannabinoid system in metabolic and inflammatory responses in dairy cows during negative energy balance. J Dairy Sci 2025:S0022-0302(25)00017-7. [PMID: 39824501 DOI: 10.3168/jds.2024-25772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Accepted: 12/18/2024] [Indexed: 01/20/2025]
Abstract
The endocannabinoid system (ECS) is involved in the regulation of energy metabolism, immune function and reproduction in mammals. The ECS is consisted of the endocannabinoid (eCB) ligands, enzymes, and cannabinoid receptors. In mammals, the cannabinoid-1 receptor (CB1/CNR1) is expressed in the central nervous system and in peripheral tissues; and its activation increases anabolic processes. The cannabinoid-2 receptor (CB2/CNR2) is most highly expressed in immune cells, and its activation exerts mainly anti-inflammatory effects. Until recently, little was known about the involvement of the ECS in physiological responses in dairy cows. As peripartum dairy cows undergo vast changes in energy metabolism and immune function, processes that are regulated by the ECS, several studies characterized ECS components in transition cows. Concentrations of eCB in the adipose tissue were higher postpartum (PP), and levels of the eCB N-arachidonoylethanolamide (AEA) were increased PP compared with prepartum. Exogenous injections of AEA to transition cows may increase adipose deposition, but did not affect feed intake. In vitro models showed that bovine adipocyte metabolism was differentially affected by CB1 agonists and antagonists in nonlactating non-gestating compared with PP cows. Thus, the responses of the PP dairy cows to ECS modulations may be related to the physiological and reproductive stage of the cow. Currently, whole-body ECS activation via agonists is mostly not feasible in vivo in livestock. Alternatively, downregulation of ECS activation can be achieved by supplementation of omega-3 (n-3) fatty acids. Indeed, in vivo studies with transition cows supplemented with n-3 showed a moderate downregulation of ECS components in the blood, adipose and liver, improved systemic insulin sensitivity, but evidently reduced insulin sensitivity in the adipose tissue PP. The abundance of CB1 was lower in immune cells, and anti-inflammatory effects were found in PP cows supplemented with n-3; possibly associating ECS downregulation with immune function. The physiological impact of ECS activation is an exciting and complex area of research, that could influence the physiology of dairy cows during metabolic and inflammatory challenges. Dairy cows may be an experimental model for ECS modulations, with broader relevance to female mammals. More research is required on how selective ECS activation/downregulation in tissues could affect immune-metabolic function in dairy cows.
Collapse
Affiliation(s)
- Maya Zachut
- Department of Ruminant Science, Institute of Animal Sciences, ARO Volcani Institute, Israel.
| | - Yana Butenko
- Department of Ruminant Science, Institute of Animal Sciences, ARO Volcani Institute, Israel
| | - Priscila Dos Santos Silva
- Department of Ruminant Science, Institute of Animal Sciences, ARO Volcani Institute, Israel; Department of Animal Science, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| |
Collapse
|
2
|
Donnellan EM, Perrier JP, Keogh K, Štiavnická M, Collins CM, Dunleavy EM, Sellem E, Bernecic NC, Lonergan P, Kenny DA, Fair S. Identification of differentially expressed mRNAs and miRNAs in spermatozoa of bulls of varying fertility. Front Vet Sci 2022; 9:993561. [PMID: 36277068 PMCID: PMC9581129 DOI: 10.3389/fvets.2022.993561] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 09/06/2022] [Indexed: 11/04/2022] Open
Abstract
Bulls used in artificial insemination, with apparently normal semen quality, can vary significantly in their field fertility. This study aimed to characterize the transcriptome of spermatozoa from high (HF) and low (LF) fertility bulls at the mRNA and miRNA level in order to identify potential novel markers of fertility. Holstein-Friesian bulls were assigned to either the HF or LF group (n = 10 per group) based on an adjusted national fertility index from a minimum of 500 inseminations. Total RNA was extracted from a pool of frozen-thawed spermatozoa from three different ejaculates per bull, following which mRNA-seq and miRNA-seq were performed. Six mRNAs and 13 miRNAs were found differentially expressed (P < 0.05, FC > 1.5) between HF and LF bulls. Of particular interest, the gene pathways targeted by the 13 differentially expressed miRNAs were related to embryonic development and gene expression regulation. Previous studies reported that disruptions to protamine 1 mRNA (PRM1) had deleterious consequences for sperm chromatin structure and fertilizing ability. Notably, PRM1 exhibited a higher expression in spermatozoa from LF than HF bulls. In contrast, Western Blot analysis revealed a decrease in PRM1 protein abundance for spermatozoa from LF bulls; this was not associated with increased protamine deficiency (measured by the degree of chromatin compaction) or DNA fragmentation, as assessed by flow cytometry analyses. However, protamine deficiency was positively and moderately correlated with the percentage of spermatozoa with DNA fragmentation, irrespective of fertility group. This study has identified potential biomarkers that could be used for improving semen quality assessments of bull fertility.
Collapse
Affiliation(s)
- Eimear M. Donnellan
- Laboratory of Animal Reproduction, Department of Biological Sciences, Biomaterials Research Cluster, Faculty of Science and Engineering, School of Natural Sciences, Bernal Institute, University of Limerick, Limerick, Ireland
| | - Jean-Philippe Perrier
- Laboratory of Animal Reproduction, Department of Biological Sciences, Biomaterials Research Cluster, Faculty of Science and Engineering, School of Natural Sciences, Bernal Institute, University of Limerick, Limerick, Ireland
| | - Kate Keogh
- Animal and Bioscience Research Department, Animal and Grassland Research and Innovation Centre, Teagasc, Ireland
| | - Miriam Štiavnická
- Laboratory of Animal Reproduction, Department of Biological Sciences, Biomaterials Research Cluster, Faculty of Science and Engineering, School of Natural Sciences, Bernal Institute, University of Limerick, Limerick, Ireland
| | | | - Elaine M. Dunleavy
- Centre for Chromosome Biology, Biomedical Sciences, National University of Ireland, Galway, Ireland
| | - Eli Sellem
- ALLICE, Innovation and Development, Paris, France
| | - Naomi C. Bernecic
- Laboratory of Animal Reproduction, Department of Biological Sciences, Biomaterials Research Cluster, Faculty of Science and Engineering, School of Natural Sciences, Bernal Institute, University of Limerick, Limerick, Ireland
| | - Patrick Lonergan
- School of Agriculture and Food Science, University College Dublin, Dublin, Ireland
| | - David A. Kenny
- Animal and Bioscience Research Department, Animal and Grassland Research and Innovation Centre, Teagasc, Ireland
| | - Sean Fair
- Laboratory of Animal Reproduction, Department of Biological Sciences, Biomaterials Research Cluster, Faculty of Science and Engineering, School of Natural Sciences, Bernal Institute, University of Limerick, Limerick, Ireland,*Correspondence: Sean Fair
| |
Collapse
|
3
|
Liu R, Liu X, Bai X, Xiao C, Dong Y. A Study of the Regulatory Mechanism of the CB1/PPARγ2/PLIN1/HSL Pathway for Fat Metabolism in Cattle. Front Genet 2021; 12:631187. [PMID: 34017353 PMCID: PMC8129027 DOI: 10.3389/fgene.2021.631187] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 03/08/2021] [Indexed: 12/14/2022] Open
Abstract
Fat metabolism is closely related to the economic characteristics of beef cattle. Therefore, regulating fat deposition and increasing intramuscular fat deposition are among the main goals of breeders. In this study, we aim to explore the regulatory role of CB1 gene on PPARγ2/PLIN1/HSL pathway in fat metabolism, and to further explore the differential expression of regulatory factors of this pathway in Shandong black cattle and Luxi cattle. In this study, CB1 overexpression stimulated lipid synthesis in adipocytes to some extent by increasing the levels of FASN and ACSL1. CB1 inhibitors reduce the lipid content in adipocytes and reduce the expression of GLUT1 and Insig1. In addition, overexpression of CB1 decreased the expression of PPARγ2 and led to an increase in PLIN1 expression and a decrease in HSL expression in adipocytes. We also found that the CB1/PPARγ2/PLIN1/HSL was differentially expressed in the different breeds of cattle and was involved in the regulation of fat metabolism, which affected the fatty acid content in the longissimus dorsi muscle of the two breeds. In short, CB1 participates in lipid metabolism by regulating HSL in the PPARγ2 and PLIN1 pathways, and improves lipid formation in adipocytes. In conclusion, CB1/PPARγ2/PLIN1/HSL pathway may be involved in the regulation of lipid metabolism.
Collapse
Affiliation(s)
- Ruili Liu
- Laboratory of Animal Physiology and Biochemistry, Animal Embryo Center, College of Animal Science, Qingdao Agricultural University, Qingdao, China
| | - Xianxun Liu
- Laboratory of Animal Molecular Shandong Black Cattle Breeding Engineering Technology Center, College of Animal Science, Qingdao Agricultural University, Qingdao, China
| | - Xuejin Bai
- Laboratory of Animal Physiology and Biochemistry, Animal Embryo Center, College of Animal Science, Qingdao Agricultural University, Qingdao, China.,Laboratory of Animal Molecular Shandong Black Cattle Breeding Engineering Technology Center, College of Animal Science, Qingdao Agricultural University, Qingdao, China
| | - Chaozhu Xiao
- Laboratory of Animal Physiology and Biochemistry, Animal Embryo Center, College of Animal Science, Qingdao Agricultural University, Qingdao, China.,Laboratory of Animal Molecular Shandong Black Cattle Breeding Engineering Technology Center, College of Animal Science, Qingdao Agricultural University, Qingdao, China
| | - Yajuan Dong
- Laboratory of Animal Physiology and Biochemistry, Animal Embryo Center, College of Animal Science, Qingdao Agricultural University, Qingdao, China.,Laboratory of Animal Molecular Shandong Black Cattle Breeding Engineering Technology Center, College of Animal Science, Qingdao Agricultural University, Qingdao, China
| |
Collapse
|
4
|
Paul N, Kumaresan A, Das Gupta M, Nag P, Guvvala PR, Kuntareddi C, Sharma A, Selvaraju S, Datta TK. Transcriptomic Profiling of Buffalo Spermatozoa Reveals Dysregulation of Functionally Relevant mRNAs in Low-Fertile Bulls. Front Vet Sci 2021; 7:609518. [PMID: 33506000 PMCID: PMC7829312 DOI: 10.3389/fvets.2020.609518] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 11/13/2020] [Indexed: 12/12/2022] Open
Abstract
Although, it is known that spermatozoa harbor a variety of RNAs that may influence embryonic development, little is understood about sperm transcriptomic differences in relation to fertility, especially in buffaloes. In the present study, we compared the differences in sperm functional attributes and transcriptomic profile between high- and low-fertile buffalo bulls. Sperm membrane and acrosomal integrity were lower (P < 0.05), while protamine deficiency and lipid peroxidation were higher (P < 0.05) in low- compared to high-fertile bulls. Transcriptomic analysis using mRNA microarray technology detected a total of 51,282 transcripts in buffalo spermatozoa, of which 4,050 transcripts were differentially expressed, and 709 transcripts were found to be significantly dysregulated (P < 0.05 and fold change >1) between high- and low-fertile bulls. Majority of the dysregulated transcripts were related to binding activity, transcription, translation, and metabolic processes with primary localization in the cell nucleus, nucleoplasm, and in cytosol. Pathways related to MAPK signaling, ribosome pathway, and oxidative phosphorylation were dysregulated in low-fertile bull spermatozoa. Using bioinformatics analysis, we observed that several genes related to sperm functional attributes were significantly downregulated in low-fertile bull spermatozoa. Validation of the results of microarray analysis was carried out using real-time qPCR expression analysis of selected genes (YBX1, ORAI3, and TFAP2C). The relative expression of these genes followed the same trend in both the techniques. Collectively, this is the first study to report the transcriptomic profile of buffalo spermatozoa and to demonstrate the dysregulation of functionally relevant transcripts in low-fertile bull spermatozoa. The results of the present study open up new avenues for understanding the etiology for poor fertility in buffalo bulls and to identify fertility biomarkers.
Collapse
Affiliation(s)
- Nilendu Paul
- Theriogenology Laboratory, Veterinary Gynaecology and Obstetrics, Southern Regional Station of ICAR - National Dairy Research Institute, Bengaluru, India
| | - Arumugam Kumaresan
- Theriogenology Laboratory, Veterinary Gynaecology and Obstetrics, Southern Regional Station of ICAR - National Dairy Research Institute, Bengaluru, India
| | - Mohua Das Gupta
- Theriogenology Laboratory, Veterinary Gynaecology and Obstetrics, Southern Regional Station of ICAR - National Dairy Research Institute, Bengaluru, India
| | - Pradeep Nag
- Theriogenology Laboratory, Veterinary Gynaecology and Obstetrics, Southern Regional Station of ICAR - National Dairy Research Institute, Bengaluru, India
| | - Pushpa Rani Guvvala
- Reproductive Physiology Laboratory, ICAR - National Institute of Animal Nutrition and Physiology, Bengaluru, India
| | - Channareddi Kuntareddi
- Theriogenology Laboratory, Veterinary Gynaecology and Obstetrics, Southern Regional Station of ICAR - National Dairy Research Institute, Bengaluru, India
| | - Ankur Sharma
- Theriogenology Laboratory, Veterinary Gynaecology and Obstetrics, Southern Regional Station of ICAR - National Dairy Research Institute, Bengaluru, India
| | - Sellappan Selvaraju
- Reproductive Physiology Laboratory, ICAR - National Institute of Animal Nutrition and Physiology, Bengaluru, India
| | - Tirtha Kumar Datta
- Animal Genomics Laboratory, ICAR - National Dairy Research Institute, Karnal, India
| |
Collapse
|
5
|
Rather HA, Kumaresan A, Nag P, Kumar V, Nayak S, Batra V, Ganaie BA, Baithalu RK, Mohanty TK, Datta TK. Spermatozoa produced during winter are superior in terms of phenotypic characteristics and oviduct explants binding ability in the water buffalo (Bubalus bubalis). Reprod Domest Anim 2020; 55:1629-1637. [PMID: 32945545 DOI: 10.1111/rda.13824] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 09/08/2020] [Indexed: 01/16/2023]
Abstract
Although reduced reproductive efficiency during summer has been well documented in buffaloes, the reason for the same is yet to be understood. The present study was conducted to identify the subtle differences in sperm phenotypic characteristics (motility, membrane integrity, acrosome reaction and lipid peroxidation status), oviduct binding ability and expression of fertility-associated genes (AK 1, ATP5D, CatSper 1, Cytochrome P450 aromatase, SPP1 and PEBP1) between winter and summer seasons in buffaloes. Cryopreserved spermatozoa from 6 Murrah buffalo bulls (3 ejaculates/bull/season) were utilized for the study. Real-time quantitative PCR was performed for assessing the expression patterns of select fertility-associated genes. The proportion of motile and membrane intact spermatozoa was significantly higher (p < .05) in winter as compared to summer ejaculates. The proportion of moribund and lipid peroxidized spermatozoa was significantly lower (p < .05) in winter ejaculates as compared to summer. The sperm-oviduct binding index was significantly lower (p < .01) when spermatozoa from summer ejaculates were used as compared to winter ejaculates. The expression of fertility-associated genes did not differ significantly between the two seasons except for PEPB1; the transcriptional abundance of PEPB1 was significantly (p < .05) lower in summer as compared to winter season. It was inferred that buffalo spermatozoa produced during winter season were superior in terms of cryotolerance, membrane and acrosome integrity, lipid peroxidation status and the ability to bind with oviduct explants.
Collapse
Affiliation(s)
- Haneef Ahmad Rather
- Animal Reproduction, Gynaecology and Obstetrics, National Dairy Research Institute, Karnal, India
| | - Arumugam Kumaresan
- Animal Reproduction, Gynaecology and Obstetrics, National Dairy Research Institute, Karnal, India
| | - Pradeep Nag
- Animal Reproduction, Gynaecology and Obstetrics, National Dairy Research Institute, Karnal, India
| | - Vimlesh Kumar
- Animal Reproduction, Gynaecology and Obstetrics, National Dairy Research Institute, Karnal, India
| | - Samiksha Nayak
- Animal Reproduction, Gynaecology and Obstetrics, National Dairy Research Institute, Karnal, India
| | - Vipul Batra
- Animal Biotechnology Centre, National Dairy Research Institute, Karnal, India
| | - Bilal Ahmad Ganaie
- Animal Reproduction, Gynaecology and Obstetrics, National Dairy Research Institute, Karnal, India
| | - Rubina K Baithalu
- Animal Reproduction, Gynaecology and Obstetrics, National Dairy Research Institute, Karnal, India
| | - Tushar Kumar Mohanty
- Animal Reproduction, Gynaecology and Obstetrics, National Dairy Research Institute, Karnal, India
| | - Tirtha Kumar Datta
- Animal Biotechnology Centre, National Dairy Research Institute, Karnal, India
| |
Collapse
|
6
|
Kang S, Pang WK, Ryu DY, Song WH, Rahman MS, Park YJ, Pang MG. Porcine seminal protein-I and II mRNA expression in boar spermatozoa is significantly correlated with fertility. Theriogenology 2019; 138:31-38. [PMID: 31280183 DOI: 10.1016/j.theriogenology.2019.06.043] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 06/25/2019] [Accepted: 06/28/2019] [Indexed: 10/26/2022]
Abstract
In recent years, genomic and proteomic biomarkers have been identified for the diagnosis of male fertility to overcome the limitations of conventional semen analysis. Owing to the limited genes available so far, the single gene approach is commonly adopted for analyzing the phenotype of interest. However, the single-gene approach is less effective than multiple-gene strategies for diagnosing a desirable phenotype. Herein, we investigate the ability of two fertility-related genomic markers (porcine seminal protein (PSP)-I and PSP-II) in spermatozoa to predict boar litter size in addition to conventional semen parameters. First, we examined different semen parameters (motility, motion kinematics, and capacitation status) and gene expression in high- and low-litter size boar spermatozoa. Then, we evaluated the correlation of these parameters with the fertility of 21 Yorkshire boars. Finally, we investigated the efficacy of single/combined markers to predict male fertility using a comprehensive statistical model. Our result showed that there were no significant differences in sperm motility, motion kinematics, or capacitation status, however, the mRNA expression of PSP-I and PSP-II in spermatozoa was significantly different in high- and low-litter size boars. In the individual screening test, the expression of both genes was negatively correlated with boar fertility (r = 0-0.578 and -0.456, respectively), whereas only hyperactivation (HYP) showed a positive correlation (r = 0.444) among the tested semen parameters. As single markers, PSP-I and PSP-II have a better diagnostic power to predict boar fertility, regardless of HYP, in quality assessment analyses. In addition, when these markers were combined, the positive predictive value, negative predictive value, and overall test effectiveness for fertility detection were improved. Surprisingly, when PSP-I and PSP-II were considered together, the deviation of the predicted average litter size between high- and low-litter size boars was 1.77. Based on the findings, we suggest that the use of genomic markers in spermatozoa rather than commonly analyzed semen parameters may be more accurate for evaluating male fertility. Moreover, using a combination of markers could increase the overall accuracy of (in)fertility predictions, and thus, could be considered for field application.
Collapse
Affiliation(s)
- Saehan Kang
- Department of Animal Science and Technology and BET Research Institute, Chung-Ang University, Anseong, Gyeonggi-do, 17546, Republic of Korea
| | - Won-Ki Pang
- Department of Animal Science and Technology and BET Research Institute, Chung-Ang University, Anseong, Gyeonggi-do, 17546, Republic of Korea
| | - Do-Yeal Ryu
- Department of Animal Science and Technology and BET Research Institute, Chung-Ang University, Anseong, Gyeonggi-do, 17546, Republic of Korea
| | - Won-Hee Song
- Department of Animal Science and Technology and BET Research Institute, Chung-Ang University, Anseong, Gyeonggi-do, 17546, Republic of Korea
| | - Md Saidur Rahman
- Department of Animal Science and Technology and BET Research Institute, Chung-Ang University, Anseong, Gyeonggi-do, 17546, Republic of Korea
| | - Yoo-Jin Park
- Department of Animal Science and Technology and BET Research Institute, Chung-Ang University, Anseong, Gyeonggi-do, 17546, Republic of Korea
| | - Myung-Geol Pang
- Department of Animal Science and Technology and BET Research Institute, Chung-Ang University, Anseong, Gyeonggi-do, 17546, Republic of Korea.
| |
Collapse
|