1
|
de Carvalho FE, Ferraz JBS, Pedrosa VB, Matos EC, Eler JP, Silva MR, Guimarães JD, Bussiman F, Silva BCA, Mulim HA, Rocha AO, Araujo AC, Wen H, Campos GS, Brito LF. Genetic parameters and genome-wide association studies including the X chromosome for various reproduction and semen quality traits in Nellore cattle. BMC Genomics 2025; 26:26. [PMID: 39794685 PMCID: PMC11720523 DOI: 10.1186/s12864-024-11193-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 12/27/2024] [Indexed: 01/13/2025] Open
Abstract
BACKGROUND The profitability of the beef industry is directly influenced by the fertility rate and reproductive performance of both males and females, which can be improved through selective breeding. When performing genomic analyses, genetic markers located on the X chromosome have been commonly ignored despite the X chromosome being one of the largest chromosomes in the cattle genome. Therefore, the primary objectives of this study were to: (1) estimate variance components and genetic parameters for eighteen male and five female fertility and reproductive traits in Nellore cattle including X chromosome markers in the analyses; and (2) perform genome-wide association studies and functional genomic analyses to better understand the genetic background of male and female fertility and reproductive performance traits in Nellore cattle. RESULTS The percentage of the total direct heritability (h2total) explained by the X chromosome markers (h2x) ranged from 3 to 32% (average: 16.4%) and from 9 to 67% (average: 25.61%) for female reproductive performance and male fertility traits, respectively. Among the traits related to breeding soundness evaluation, the overall bull and semen evaluation and semen quality traits accounted for the highest proportion of h2x relative to h2total with an average of 39.5% and 38.75%, respectively. The total number of significant genomic markers per trait ranged from 7 (seminal vesicle width) to 43 (total major defects). The number of significant markers located on the X chromosome ranged from zero to five. A total of 683, 252, 694, 382, 61, and 77 genes overlapped with the genomic regions identified for traits related to female reproductive performance, semen quality, semen morphology, semen defects, overall bulls' fertility evaluation, and overall semen evaluation traits, respectively. The key candidate genes located on the X chromosome are PRR32, STK26, TMSB4X, TLR7, PRPS2, SMS, SMARCA1, UTP14A, and BCORL1. The main gene ontology terms identified are "Oocyte Meiosis", "Progesterone Mediated Oocyte Maturation", "Thermogenesis", "Sperm Flagellum", and "Innate Immune Response". CONCLUSIONS Our findings indicate the key role of genes located on the X chromosome on the phenotypic variability of male and female reproduction and fertility traits in Nellore cattle. Breeding programs aiming to improve these traits should consider adding the information from X chromosome markers in their genomic analyses.
Collapse
Affiliation(s)
- Felipe E de Carvalho
- Department of Veterinary Medicine, Faculty of Animal Science and Food Engineering, University of São Paulo, Pirassununga, SP, Brazil.
- Department of Animal Sciences, Purdue University, 270 S. Russell Street, West Lafayette, IN, 47907, USA.
| | - José Bento S Ferraz
- Department of Veterinary Medicine, Faculty of Animal Science and Food Engineering, University of São Paulo, Pirassununga, SP, Brazil
| | - Victor B Pedrosa
- Department of Animal Sciences, Purdue University, 270 S. Russell Street, West Lafayette, IN, 47907, USA
| | - Elisangela C Matos
- Department of Veterinary Medicine, Faculty of Animal Science and Food Engineering, University of São Paulo, Pirassununga, SP, Brazil
| | - Joanir P Eler
- Department of Veterinary Medicine, Faculty of Animal Science and Food Engineering, University of São Paulo, Pirassununga, SP, Brazil
| | - Marcio R Silva
- Department of Veterinary Medicine, Faculty of Animal Science and Food Engineering, University of São Paulo, Pirassununga, SP, Brazil
| | - José D Guimarães
- Department of Veterinary Medicine, Federal University of Vicosa, Vicosa, MG, Brazil
| | - Fernando Bussiman
- Department of Animal and Dairy Science, University of Georgia, Athens, GA, USA
| | - Barbara C A Silva
- Department of Veterinary Medicine, Faculty of Animal Science and Food Engineering, University of São Paulo, Pirassununga, SP, Brazil
| | - Henrique A Mulim
- Department of Animal Sciences, Purdue University, 270 S. Russell Street, West Lafayette, IN, 47907, USA
| | - Artur Oliveira Rocha
- Department of Animal Sciences, Purdue University, 270 S. Russell Street, West Lafayette, IN, 47907, USA
| | - Andre C Araujo
- Department of Animal Sciences, Purdue University, 270 S. Russell Street, West Lafayette, IN, 47907, USA
| | - Hui Wen
- Department of Animal Sciences, Purdue University, 270 S. Russell Street, West Lafayette, IN, 47907, USA
| | - Gabriel S Campos
- Department of Animal Sciences, Purdue University, 270 S. Russell Street, West Lafayette, IN, 47907, USA
| | - Luiz F Brito
- Department of Animal Sciences, Purdue University, 270 S. Russell Street, West Lafayette, IN, 47907, USA.
| |
Collapse
|
2
|
Barth A, Perry VEA, Hamilton LE, Sutovsky P, Oko R. Assessing Bovine Male Fertility in a Technological Age. ADVANCES IN ANATOMY, EMBRYOLOGY, AND CELL BIOLOGY 2025; 240:297-329. [PMID: 40272592 DOI: 10.1007/978-3-031-70126-9_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2025]
Abstract
New and emerging technologies allow for a deeper and more comprehensive understanding of sperm physiology that can be harnessed to improve bull fertility selection. This chapter focuses on (1) the use of conventional and emerging flow cytometry techniques to further enhance functional sperm assessments; (2) new developments in proteomic and metabolomic biomarkers of bull fertility and how they can better inform fertility evaluations; and (3) the use of sperm selection technologies to optimize the fertility outcomes of bulls in artificial insemination service. As our knowledge of sperm physiology continues to expand, technology will allow for a faster translational capacity and continuous development of techniques. The technologies and techniques presented are current tools that can be used to enhance the efficiency, precision and accuracy of bull fertility assessments and better inform herd management.
Collapse
Affiliation(s)
- Albert Barth
- Department of Large Animal Clinical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK, Canada.
| | - Viv E A Perry
- Queensland Sperm Morphology Laboratory (QSML), Goondiwindi, QLD, Australia
| | - Lauren E Hamilton
- Division of Animal Sciences, University of Missouri, Columbia, MO, USA
| | - Peter Sutovsky
- Division of Animal Science and Department of Obstetrics, Gynecology & Women's Health, University of Missouri, Columbia, MO, USA
| | - Richard Oko
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, Canada
| |
Collapse
|
3
|
Niu Y, Li Y, Zhao Y, He X, Zhao Q, Pu Y, Ma Y, Jiang L. Whole-genome sequencing identifies functional genes for environmental adaptation in Chinese sheep. J Genet Genomics 2024; 51:1278-1285. [PMID: 39260683 DOI: 10.1016/j.jgg.2024.08.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 08/28/2024] [Accepted: 08/29/2024] [Indexed: 09/13/2024]
Abstract
Sheep (Ovis aries), among the first domesticated species, are now globally widespread and exhibit remarkable adaptability to diverse environments. In this study, we perform whole-genome sequencing of 266 animals from 18 distinct Chinese sheep populations, each displaying unique phenotypes indicative of adaptation to varying environmental conditions. Integrating 131 environmental factors with single nucleotide polymorphism variations, we conduct a comprehensive genetic-environmental association analysis. This analysis identifies 35 key genes likely integral to the environmental adaptation of sheep. The functions of these genes include fat tail formation (HOXA10, HOXA11, JAZF1), wool characteristics (FER, FGF5, MITF, PDE4B), horn phenotypes (RXFP2), reproduction (HIBADH, TRIM71, C6H4orf22), and growth traits (ADGRL3, TRHDE). Notably, we observe a significant correlation between the frequency of missense mutations in the PAPSS2 and RXFP2 genes and variations in altitude. Our study reveals candidate genes for adaptive variation in sheep and demonstrates the diversity in how sheep adapt to their environment.
Collapse
Affiliation(s)
- Yinan Niu
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China; National Germplasm Center of Domestic Animal Resources, Ministry of Technology, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China
| | - Yefang Li
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China; National Germplasm Center of Domestic Animal Resources, Ministry of Technology, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China
| | - Yuhetian Zhao
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China; National Germplasm Center of Domestic Animal Resources, Ministry of Technology, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China
| | - Xiaohong He
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China; National Germplasm Center of Domestic Animal Resources, Ministry of Technology, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China
| | - Qianjun Zhao
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China; National Germplasm Center of Domestic Animal Resources, Ministry of Technology, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China
| | - Yabin Pu
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China; National Germplasm Center of Domestic Animal Resources, Ministry of Technology, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China
| | - Yuehui Ma
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China; National Germplasm Center of Domestic Animal Resources, Ministry of Technology, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China.
| | - Lin Jiang
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China; National Germplasm Center of Domestic Animal Resources, Ministry of Technology, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China.
| |
Collapse
|
4
|
Hodge MJ, de Las Heras-Saldana S, Rindfleish SJ, Stephen CP, Pant SD. QTLs and Candidate Genes Associated with Semen Traits in Merino Sheep. Animals (Basel) 2023; 13:2286. [PMID: 37508063 PMCID: PMC10376747 DOI: 10.3390/ani13142286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 07/06/2023] [Accepted: 07/07/2023] [Indexed: 07/30/2023] Open
Abstract
Ram semen traits play a significant role in conception outcomes, which in turn may influence reproductive efficiency and the overall productivity and profitability of sheep enterprises. Since hundreds of ewes may be inseminated from a single ejaculate, it is important to evaluate semen quality prior to use in sheep breeding programs. Given that semen traits have been found to be heritable, genetic variation likely contributes to the variability observed in these traits. Identifying such genetic variants could provide novel insights into the molecular mechanisms underlying variability in semen traits. Therefore, this study aimed to identify quantitative trait loci (QTLs) associated with semen traits in Merino sheep. A genome-wide association study (GWAS) was undertaken using 4506 semen collection records from 246 Merino rams collected between January 2002 and May 2021. The R package RepeatABEL was used to perform a GWAS for semen volume, gross motility, concentration, and percent post-thaw motility. A total of 35 QTLs, located on 16 Ovis aries autosomes (OARs), were significantly associated with either of the four semen traits in this study. A total of 89, 95, 33, and 73 candidate genes were identified, via modified Bonferroni, within the QTLs significantly associated with volume, gross motility, concentration, and percent post-thaw motility, respectively. Among the candidate genes identified, SORD, SH2B1, and NT5E have been previously described to significantly influence spermatogenesis, spermatozoal motility, and high percent post-thaw motility, respectively. Several candidate genes identified could potentially influence ram semen traits based on existing evidence in the literature. As such, validation of these putative candidates may offer the potential to develop future strategies to improve sheep reproductive efficiency. Furthermore, Merino ram semen traits are lowly heritable (0.071-0.139), and thus may be improved by selective breeding.
Collapse
Affiliation(s)
- Marnie J Hodge
- School of Agricultural, Environmental and Veterinary Sciences, Charles Sturt University, Wagga Wagga, NSW 2678, Australia
- Apiam Animal Health, Apiam Genetic Services, Dubbo, NSW 2830, Australia
| | - Sara de Las Heras-Saldana
- Animal Genetics and Breeding Unit, a Joint Venture of NSW Department of Primary Industries and University of New England, Armidale, NSW 2351, Australia
| | | | - Cyril P Stephen
- School of Agricultural, Environmental and Veterinary Sciences, Charles Sturt University, Wagga Wagga, NSW 2678, Australia
- Gulbali Institute, Charles Sturt University, Boorooma Street, Wagga Wagga, NSW 2678, Australia
| | - Sameer D Pant
- School of Agricultural, Environmental and Veterinary Sciences, Charles Sturt University, Wagga Wagga, NSW 2678, Australia
- Gulbali Institute, Charles Sturt University, Boorooma Street, Wagga Wagga, NSW 2678, Australia
| |
Collapse
|
5
|
Singh R, Deb R, Sengar GS, Raja TV, Kumar S, Singh U, Das AK, Alex R, Kumar A, Tyagi S, Pal P, Patil NV. Differentially expressed microRNAs in biochemically characterized Frieswal TM crossbred bull semen. Anim Biotechnol 2023; 34:25-38. [PMID: 34106815 DOI: 10.1080/10495398.2021.1932519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
In addition to the transmission of paternal genome, spermatozoa also carry coding as well as noncoding microRNAs (miRNAs) into the female oocyte during the process of biological fertilization. Based on RNA deep sequencing, a total 28 number of differentially expressed miRNAs were cataloged in categorized FrieswalTM crossbred (Holstein Friesian X Sahiwal) bull semen on the basis of conception rate (CR) in field progeny testing program. Validation of selected miRNAs viz. bta-mir-182, bta-let-7b, bta-mir-34c and bta-mir-20a revealed that, superior bull semen having comparatively (p < .05) lower level of all the miRNAs in contrast to inferior bull semen. Additionally, it was illustrated that, bta-mir-20a and bta-mir-34c miRNAs are negatively (p < .01) correlated with seminal plasma catalase (CAT) activity and glutathione peroxidase (GPx) level. Interactome studies identified that bta-mir-140, bta-mir-342, bta-mir-1306 and bta-mir-217 can target few of the important solute carrier (SLC) proteins viz. SLC30A3, SLC39A9, SLC31A1 and SLC38A2, respectively. Interestingly, it was noticed that all the SLCs were significantly (p < .05) expressed at higher level in superior quality bull semen and they are negatively correlated (p < .01) with their corresponding miRNAs as mentioned. This study may reflect the role of miRNAs in regulating few of the candidate genes and thus may influence the bull semen quality traits.
Collapse
Affiliation(s)
- Rani Singh
- Molecular Genetics Laboratory, ICAR-Central Institute for Research on Cattle, Meerut, India
| | - Rajib Deb
- Molecular Genetics Laboratory, ICAR-Central Institute for Research on Cattle, Meerut, India
| | - Gyanendra Singh Sengar
- Molecular Genetics Laboratory, ICAR-Central Institute for Research on Cattle, Meerut, India
| | - T V Raja
- Molecular Genetics Laboratory, ICAR-Central Institute for Research on Cattle, Meerut, India
| | - Sushil Kumar
- Molecular Genetics Laboratory, ICAR-Central Institute for Research on Cattle, Meerut, India
| | - Umesh Singh
- Molecular Genetics Laboratory, ICAR-Central Institute for Research on Cattle, Meerut, India
| | - A K Das
- Molecular Genetics Laboratory, ICAR-Central Institute for Research on Cattle, Meerut, India
| | - Rani Alex
- Molecular Genetics Laboratory, ICAR-Central Institute for Research on Cattle, Meerut, India
| | - Amod Kumar
- Molecular Genetics Laboratory, ICAR-Central Institute for Research on Cattle, Meerut, India
| | - Shrikant Tyagi
- Molecular Genetics Laboratory, ICAR-Central Institute for Research on Cattle, Meerut, India
| | - Prasanna Pal
- Animal Physiology Division, ICAR-National Dairy Research Institute, Karnal, India
| | - N V Patil
- Molecular Genetics Laboratory, ICAR-Central Institute for Research on Cattle, Meerut, India
| |
Collapse
|
6
|
Junghare V, Alex R, Baidya A, Paul M, Alyethodi RR, Sengar GS, Kumar S, Singh U, Deb R, Hazra S. In silico modeling revealed new insights into the mechanism of action of enzyme 2'-5'-oligoadenylate synthetase in cattle. J Biomol Struct Dyn 2022; 40:14013-14026. [PMID: 34873989 DOI: 10.1080/07391102.2021.2001373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The innate immune system has an important role in developing the initial resistance to virus infection, and the ability of oligoadenylate synthetase to overcome viral evasion and enhance innate immunity is already established in humans. In the present study, we have tried to explore the molecular and structural variations present in Sahiwal (indigenous) and crossbred (Frieswal) cattle to identify the molecular mechanism of action of OAS1 gene in activation of innate immune response. The significant changes in structural alignment in terms of orientation of loops, shortening of β-sheets and formation of 3-10 α-helix was noticed in Sahiwal and Frieswal cattle. Further, it has been observed that OAS1 from Sahiwal had better binding with APC and DTP ligand than Frieswal OAS1. A remarkable change was seen in orientation at the nucleoside base region of both the ligands, which are bound with OAS1 protein from Frieswal and Sahiwal cattle. The Molecular Dynamic study of apo and ligand complex structures was provided more insight towards the stability of OAS1 from both cattle. This analysis displayed that the Sahiwal cattle protein has more steady nature throughout the simulation and has better binding towards Frieswal in terms of APC and DTP binding. Thus, OAS1 protein is the potential target for explaining the innate immune response in Sahiwal than Frieswal.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Vivek Junghare
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee, India
| | - Rani Alex
- ICAR-Central Institute for Research on Cattle, Meerut Cantt, India
| | - Apoorva Baidya
- Department of Chemistry, Indian Intitute of Technology Bombay, Mumbai, India
| | - Manish Paul
- Department of Biotechnology, Maharaja Sriram Chandra Bhanja Deo University, Baripada, India
| | | | | | - Sushil Kumar
- ICAR-National Research Center on Pig, Guwahati, India
| | - Umesh Singh
- ICAR-National Research Center on Pig, Guwahati, India
| | - Rajib Deb
- ICAR-National Research Center on Pig, Guwahati, India
| | - Saugata Hazra
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee, India.,Center of Nanotechnology, Indian Institute of Technology Roorkee, Roorkee, India
| |
Collapse
|
7
|
Carracedo S, Briand-Amirat L, Dordas-Perpinyà M, Ramos Escuredo Y, Delcombel R, Sergeant N, Delehedde M. ProAKAP4 protein marker: Towards a functional approach to male fertility. Anim Reprod Sci 2022; 247:107074. [DOI: 10.1016/j.anireprosci.2022.107074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 09/16/2022] [Accepted: 09/20/2022] [Indexed: 11/01/2022]
|
8
|
LIN28 Family in Testis: Control of Cell Renewal, Maturation, Fertility and Aging. Int J Mol Sci 2022; 23:ijms23137245. [PMID: 35806250 PMCID: PMC9266904 DOI: 10.3390/ijms23137245] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 06/20/2022] [Accepted: 06/25/2022] [Indexed: 12/12/2022] Open
Abstract
Male reproductive development starts early in the embryogenesis with somatic and germ cell differentiation in the testis. The LIN28 family of RNA-binding proteins promoting pluripotency has two members—LIN28A and LIN28B. Their function in the testis has been investigated but many questions about their exact role based on the expression patterns remain unclear. LIN28 expression is detected in the gonocytes and the migrating, mitotically active germ cells of the fetal testis. Postnatal expression of LIN28 A and B showed differential expression, with LIN28A expressed in the undifferentiated spermatogonia and LIN28B in the elongating spermatids and Leydig cells. LIN28 interferes with many signaling pathways, leading to cell proliferation, and it is involved in important testicular physiological processes, such as cell renewal, maturation, fertility, and aging. In addition, aberrant LIN28 expression is associated with testicular cancer and testicular disorders, such as hypogonadotropic hypogonadism and Klinefelter’s syndrome. This comprehensive review encompasses current knowledge of the function of LIN28 paralogs in testis and other tissues and cells because many studies suggest LIN28AB as a promising target for developing novel therapeutic agents.
Collapse
|
9
|
Dordas-Perpinyà M, Sergeant N, Ruelle I, Bruyas JF, Charreaux F, Michaud S, Carracedo S, Catalán J, Miró J, Delehedde M, Briand-Amirat L. ProAKAP4 Semen Concentrations as a Valuable Marker Protein of Post-Thawed Semen Quality and Bull Fertility: A Retrospective Study. Vet Sci 2022; 9:224. [PMID: 35622752 PMCID: PMC9144616 DOI: 10.3390/vetsci9050224] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 04/29/2022] [Accepted: 04/30/2022] [Indexed: 02/04/2023] Open
Abstract
Functional sperm quality markers to predict bull fertility have been actively investigated. Among them, proAKAP4, which is the precursor of AKAP4, the main structural protein in the fibrous sheath of spermatozoa; appears to be promising, especially since spermatozoa lacking AKAP4 expression were shown to be immotile, abnormal, and infertile. In this study, the objective was to evaluate proAKAP4 concentration values with the classic sperm motility descriptors and fertility outcomes (NRR at 90 days) in post-thawed conditions of 10 bulls' semen. ProAKAP4 expression was confirmed by Western blotting and proAKAP4 concentrations were determined by ELISA. Variations in proAKAP4 concentrations were observed independently of the motility sperm descriptors measured using computer-assisted semen analysis (CASA). A ProAKAP4 concentration of 38.67 ± 8.55 ng/10 million spermatozoa was obtained as a statistical mean of all samples. Threshold values of proAKAP4 were then determined between 19.96 to 96.95 ng/10 million spermatozoa. ProAKAP4 concentrations were positively correlated with progressive motility and the linearity coefficient. The sperm showing the lowest progressive motility were the samples exhibiting proAKAP4 concentrations below 20 ng/10 million spermatozoa. Furthermore, proAKAP4 concentrations were significantly higher in bulls with a higher NRR in the field. Our results demonstrate a correlation between the semen concentration of proAKAP4 and NRR-90d (p = 0.05) in post-thawed bull semen, highlighting the potential of proAKAP4 as a predictive marker of bull fertility.
Collapse
Affiliation(s)
- Marta Dordas-Perpinyà
- Oniris, Nantes-Atlantic College of Veterinary Medicine, 44300 Nantes, France; (M.D.-P.); (I.R.); (J.-F.B.); (S.M.)
- Equine Reproduction Service, Department of Animal Medicine and Surgery, Faculty of Veterinary Sciences, Autonomous University of Barcelona, 08193 Cerdanyola del Vallès, Spain; (J.C.); (J.M.)
| | - Nicolas Sergeant
- U1172 LilNCog—Lille Neuroscience & Cognition, CHU Lille, Inserm, University Lille, 59000 Lille, France;
- SPQI S.A.S, 82 rue Jeanne d’Arc, 59000 Lille, France; (S.C.); (M.D.)
| | - Isabelle Ruelle
- Oniris, Nantes-Atlantic College of Veterinary Medicine, 44300 Nantes, France; (M.D.-P.); (I.R.); (J.-F.B.); (S.M.)
| | - Jean-François Bruyas
- Oniris, Nantes-Atlantic College of Veterinary Medicine, 44300 Nantes, France; (M.D.-P.); (I.R.); (J.-F.B.); (S.M.)
| | | | - Sandrine Michaud
- Oniris, Nantes-Atlantic College of Veterinary Medicine, 44300 Nantes, France; (M.D.-P.); (I.R.); (J.-F.B.); (S.M.)
| | - Sara Carracedo
- SPQI S.A.S, 82 rue Jeanne d’Arc, 59000 Lille, France; (S.C.); (M.D.)
| | - Jaime Catalán
- Equine Reproduction Service, Department of Animal Medicine and Surgery, Faculty of Veterinary Sciences, Autonomous University of Barcelona, 08193 Cerdanyola del Vallès, Spain; (J.C.); (J.M.)
| | - Jordi Miró
- Equine Reproduction Service, Department of Animal Medicine and Surgery, Faculty of Veterinary Sciences, Autonomous University of Barcelona, 08193 Cerdanyola del Vallès, Spain; (J.C.); (J.M.)
| | - Maryse Delehedde
- SPQI S.A.S, 82 rue Jeanne d’Arc, 59000 Lille, France; (S.C.); (M.D.)
| | - Lamia Briand-Amirat
- Oniris, Nantes-Atlantic College of Veterinary Medicine, 44300 Nantes, France; (M.D.-P.); (I.R.); (J.-F.B.); (S.M.)
| |
Collapse
|
10
|
Sahoo B, Choudhary RK, Sharma P, Choudhary S, Gupta MK. Significance and Relevance of Spermatozoal RNAs to Male Fertility in Livestock. Front Genet 2021; 12:768196. [PMID: 34956322 PMCID: PMC8696160 DOI: 10.3389/fgene.2021.768196] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 11/15/2021] [Indexed: 12/11/2022] Open
Abstract
Livestock production contributes to a significant part of the economy in developing countries. Although artificial insemination techniques brought substantial improvements in reproductive efficiency, male infertility remains a leading challenge in livestock. Current strategies for the diagnosis of male infertility largely depend on the evaluation of semen parameters and fail to diagnose idiopathic infertility in most cases. Recent evidences show that spermatozoa contains a suit of RNA population whose profile differs between fertile and infertile males. Studies have also demonstrated the crucial roles of spermatozoal RNA (spRNA) in spermatogenesis, fertilization, and early embryonic development. Thus, the spRNA profile may serve as unique molecular signatures of fertile sperm and may play pivotal roles in the diagnosis and treatment of male fertility. This manuscript provides an update on various spRNA populations, including protein-coding and non-coding RNAs, in livestock species and their potential role in semen quality, particularly sperm motility, freezability, and fertility. The contribution of seminal plasma to the spRNA population is also discussed. Furthermore, we discussed the significance of rare non-coding RNAs (ncRNAs) such as long ncRNAs (lncRNAs) and circular RNAs (circRNAs) in spermatogenic events.
Collapse
Affiliation(s)
- Bijayalaxmi Sahoo
- Department of Biotechnology and Medical Engineering, National Institute of Technology Rourkela, Rourkela, India
| | - Ratan K. Choudhary
- College of Animal Biotechnology, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, India
| | - Paramajeet Sharma
- College of Animal Biotechnology, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, India
| | - Shanti Choudhary
- College of Animal Biotechnology, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, India
| | - Mukesh Kumar Gupta
- Department of Biotechnology and Medical Engineering, National Institute of Technology Rourkela, Rourkela, India
| |
Collapse
|
11
|
Kumaresan A, Elango K, Datta TK, Morrell JM. Cellular and Molecular Insights Into the Etiology of Subfertility/Infertility in Crossbred Bulls ( Bos taurus × Bos indicus): A Review. Front Cell Dev Biol 2021; 9:696637. [PMID: 34307374 PMCID: PMC8297507 DOI: 10.3389/fcell.2021.696637] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Accepted: 06/21/2021] [Indexed: 11/15/2022] Open
Abstract
Crossbreeding of indigenous cattle (Bos indicus) with improved (Bos taurus) breeds gained momentum and economic relevance in several countries to increase milk production. While production performance of the crossbred offspring is high due to hybrid vigor, they suffer from a high incidence of reproductive problems. Specifically, the crossbred males suffer from serious forms of subfertility/infertility, which can have a significant effect because semen from a single male is used to breed several thousand females. During the last two decades, attempts have been made to understand the probable reasons for infertility in crossbred bulls. Published evidence indicates that testicular cytology indices, hormonal concentrations, sperm phenotypic characteristics and seminal plasma composition were altered in crossbred compared to purebred males. A few recent studies compared crossbred bull semen with purebred bull semen using genomics, transcriptomics, proteomics and metabolomics; molecules potentially associated with subfertility/infertility in crossbred bulls were identified. Nevertheless, the precise reason behind the poor quality of semen and high incidence of sub-fertility/infertility in crossbred bulls are not yet well defined. To identify the underlying etiology for infertility in crossbred bulls, a thorough understanding of the magnitude of the problem and an overview of the prior art is needed; however, such systematically reviewed information is not available. Therefore, the primary focus of this review is to compile and analyze earlier findings on crossbred bull fertility/infertility. In addition, the differences between purebred and crossbred males in terms of testicular composition, sperm phenotypic characteristics, molecular composition, environmental influence and other details are described; future prospects for research on crossbred males are also outlined.
Collapse
Affiliation(s)
- Arumugam Kumaresan
- Theriogenology Laboratory, Southern Regional Station of Indian Council of Agricultural Research (ICAR)-National Dairy Research Institute, Bengaluru, India
| | - Kamaraj Elango
- Theriogenology Laboratory, Southern Regional Station of Indian Council of Agricultural Research (ICAR)-National Dairy Research Institute, Bengaluru, India
| | - Tirtha Kumar Datta
- Animal Genomics Laboratory, Indian Council of Agricultural Research (ICAR)-National Dairy Research Institute, Karnal, India
| | - Jane M Morrell
- Swedish University of Agricultural Sciences, Uppsala, Sweden
| |
Collapse
|
12
|
Prakash MA, Kumaresan A, Ebenezer Samuel King JP, Nag P, Sharma A, Sinha MK, Kamaraj E, Datta TK. Comparative Transcriptomic Analysis of Spermatozoa From High- and Low-Fertile Crossbred Bulls: Implications for Fertility Prediction. Front Cell Dev Biol 2021; 9:647717. [PMID: 34041237 PMCID: PMC8141864 DOI: 10.3389/fcell.2021.647717] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 04/06/2021] [Indexed: 12/13/2022] Open
Abstract
Crossbred bulls produced by crossing Bos taurus and Bos indicus suffer with high incidence of infertility/subfertility problems; however, the etiology remains poorly understood. The uncertain predictability and the inability of semen evaluation techniques to maintain constant correlation with fertility demand for alternate methods for bull fertility prediction. Therefore, in this study, the global differential gene expression between high- and low-fertile crossbred bull sperm was assessed using a high-throughput RNA sequencing technique with the aim to identify transcripts associated with crossbred bull fertility. Crossbred bull sperm contained transcripts for 13,563 genes, in which 2,093 were unique to high-fertile and 5,454 were unique to low-fertile bulls. After normalization of data, a total of 776 transcripts were detected, in which 84 and 168 transcripts were unique to high-fertile and low-fertile bulls, respectively. A total of 176 transcripts were upregulated (fold change > 1) and 209 were downregulated (<1) in low-fertile bulls. Gene ontology analysis identified that the sperm transcripts involved in the oxidative phosphorylation pathway and biological process such as multicellular organism development, spermatogenesis, and in utero embryonic development were downregulated in low-fertile crossbred bull sperm. Sperm transcripts upregulated and unique to low-fertile bulls were majorly involved in translation (biological process) and ribosomal pathway. With the use of RT-qPCR, selected sperm transcripts (n = 12) were validated in crossbred bulls (n = 12) with different fertility ratings and found that the transcriptional abundance of ZNF706, CRISP2, TNP2, and TNP1 genes was significantly (p < 0.05) lower in low-fertile bulls than high-fertile bulls and was positively (p < 0.05) correlated with conception rate. It is inferred that impaired oxidative phosphorylation could be the predominant reason for low fertility in crossbred bulls and that transcriptional abundance of ZNF706, CRISP2, TNP2, and TNP1 genes could serve as potential biomarkers for fertility in crossbred bulls.
Collapse
Affiliation(s)
- Mani Arul Prakash
- Theriogenology Laboratory, Veterinary Gynaecology and Obstetrics, Southern Regional Station of Indian Council of Agricultural Research (ICAR)-National Dairy Research Institute, Bengaluru, India
| | - Arumugam Kumaresan
- Theriogenology Laboratory, Veterinary Gynaecology and Obstetrics, Southern Regional Station of Indian Council of Agricultural Research (ICAR)-National Dairy Research Institute, Bengaluru, India
| | - John Peter Ebenezer Samuel King
- Theriogenology Laboratory, Veterinary Gynaecology and Obstetrics, Southern Regional Station of Indian Council of Agricultural Research (ICAR)-National Dairy Research Institute, Bengaluru, India
| | - Pradeep Nag
- Theriogenology Laboratory, Veterinary Gynaecology and Obstetrics, Southern Regional Station of Indian Council of Agricultural Research (ICAR)-National Dairy Research Institute, Bengaluru, India
| | - Ankur Sharma
- Theriogenology Laboratory, Veterinary Gynaecology and Obstetrics, Southern Regional Station of Indian Council of Agricultural Research (ICAR)-National Dairy Research Institute, Bengaluru, India
| | - Manish Kumar Sinha
- Theriogenology Laboratory, Veterinary Gynaecology and Obstetrics, Southern Regional Station of Indian Council of Agricultural Research (ICAR)-National Dairy Research Institute, Bengaluru, India
| | - Elango Kamaraj
- Theriogenology Laboratory, Veterinary Gynaecology and Obstetrics, Southern Regional Station of Indian Council of Agricultural Research (ICAR)-National Dairy Research Institute, Bengaluru, India
| | - Tirtha Kumar Datta
- Animal Genomics Laboratory, Indian Council of Agricultural Research (ICAR), National Dairy Research Institute, Karnal, India
| |
Collapse
|
13
|
Paul N, Kumaresan A, Das Gupta M, Nag P, Guvvala PR, Kuntareddi C, Sharma A, Selvaraju S, Datta TK. Transcriptomic Profiling of Buffalo Spermatozoa Reveals Dysregulation of Functionally Relevant mRNAs in Low-Fertile Bulls. Front Vet Sci 2021; 7:609518. [PMID: 33506000 PMCID: PMC7829312 DOI: 10.3389/fvets.2020.609518] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 11/13/2020] [Indexed: 12/12/2022] Open
Abstract
Although, it is known that spermatozoa harbor a variety of RNAs that may influence embryonic development, little is understood about sperm transcriptomic differences in relation to fertility, especially in buffaloes. In the present study, we compared the differences in sperm functional attributes and transcriptomic profile between high- and low-fertile buffalo bulls. Sperm membrane and acrosomal integrity were lower (P < 0.05), while protamine deficiency and lipid peroxidation were higher (P < 0.05) in low- compared to high-fertile bulls. Transcriptomic analysis using mRNA microarray technology detected a total of 51,282 transcripts in buffalo spermatozoa, of which 4,050 transcripts were differentially expressed, and 709 transcripts were found to be significantly dysregulated (P < 0.05 and fold change >1) between high- and low-fertile bulls. Majority of the dysregulated transcripts were related to binding activity, transcription, translation, and metabolic processes with primary localization in the cell nucleus, nucleoplasm, and in cytosol. Pathways related to MAPK signaling, ribosome pathway, and oxidative phosphorylation were dysregulated in low-fertile bull spermatozoa. Using bioinformatics analysis, we observed that several genes related to sperm functional attributes were significantly downregulated in low-fertile bull spermatozoa. Validation of the results of microarray analysis was carried out using real-time qPCR expression analysis of selected genes (YBX1, ORAI3, and TFAP2C). The relative expression of these genes followed the same trend in both the techniques. Collectively, this is the first study to report the transcriptomic profile of buffalo spermatozoa and to demonstrate the dysregulation of functionally relevant transcripts in low-fertile bull spermatozoa. The results of the present study open up new avenues for understanding the etiology for poor fertility in buffalo bulls and to identify fertility biomarkers.
Collapse
Affiliation(s)
- Nilendu Paul
- Theriogenology Laboratory, Veterinary Gynaecology and Obstetrics, Southern Regional Station of ICAR - National Dairy Research Institute, Bengaluru, India
| | - Arumugam Kumaresan
- Theriogenology Laboratory, Veterinary Gynaecology and Obstetrics, Southern Regional Station of ICAR - National Dairy Research Institute, Bengaluru, India
| | - Mohua Das Gupta
- Theriogenology Laboratory, Veterinary Gynaecology and Obstetrics, Southern Regional Station of ICAR - National Dairy Research Institute, Bengaluru, India
| | - Pradeep Nag
- Theriogenology Laboratory, Veterinary Gynaecology and Obstetrics, Southern Regional Station of ICAR - National Dairy Research Institute, Bengaluru, India
| | - Pushpa Rani Guvvala
- Reproductive Physiology Laboratory, ICAR - National Institute of Animal Nutrition and Physiology, Bengaluru, India
| | - Channareddi Kuntareddi
- Theriogenology Laboratory, Veterinary Gynaecology and Obstetrics, Southern Regional Station of ICAR - National Dairy Research Institute, Bengaluru, India
| | - Ankur Sharma
- Theriogenology Laboratory, Veterinary Gynaecology and Obstetrics, Southern Regional Station of ICAR - National Dairy Research Institute, Bengaluru, India
| | - Sellappan Selvaraju
- Reproductive Physiology Laboratory, ICAR - National Institute of Animal Nutrition and Physiology, Bengaluru, India
| | - Tirtha Kumar Datta
- Animal Genomics Laboratory, ICAR - National Dairy Research Institute, Karnal, India
| |
Collapse
|
14
|
Prakash MA, Kumaresan A, Sinha MK, Kamaraj E, Mohanty TK, Datta TK, Morrell JM. RNA-Seq analysis reveals functionally relevant coding and non-coding RNAs in crossbred bull spermatozoa. Anim Reprod Sci 2020; 222:106621. [PMID: 33069132 PMCID: PMC7607363 DOI: 10.1016/j.anireprosci.2020.106621] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 10/02/2020] [Accepted: 10/03/2020] [Indexed: 12/12/2022]
Abstract
RNA-Seq analysis was done to characterize the transcriptome of crossbred bull spermatozoa. Among the 13,814 transcripts detected, 431 had FPKM > 1 and 13,673 had FPKM > 0 or < 1. Coding and non-coding RNAs account for 13,145 (95.15%) and 152 (1.1%), respectively. Sperm transcripts were mainly related to ribosome, oxidative phosphorylation and spliceosome pathways. qPCR analysis showed individual variations in transcriptional abundance of selected genes.
Sperm, which are believed to be transcriptionally and translationally inactive, synthesize RNA and proteins before there is gradual disappearance of the ribosome during chromatin compaction. Sperm transfer several functionally relevant transcripts to the oocyte, controlling maternal-zygotic transition and embryonic development. The present study was undertaken to profile and analyze sperm transcripts comprehensively using Next Generation Ribonucleic acid sequencing technology in Holstein Friesian x Tharparkar crossbred bulls. The results from global transcriptomic profiling revealed transcripts for 13,814 genes; of which 431 transcripts were expressed with >1 FPKM and 13,383 transcripts were expressed with >0 or <1 FPKM. The abundant mRNA transcripts of crossbred bull sperm were PRM1 and HMGB4. Gene ontology of transcripts with>1 FPKM revealed there was a major involvement in the structural constituent of ribosomes and translation. Results from pathway enrichment indicated the connection between ribosome, oxidative phosphorylation and spliceosome pathways and the transcripts of crossbred bull spermatozoa. The transcriptional abundance of selected genes, validated using RT-qPCR, indicated significant variations between bulls. Collectively, it may be inferred that the transcripts in crossbred bull sperm were heavily implicated in functions such as the structural constituent of ribosomes and translation, and pathways such as ribosome, oxidative phosphorylation and spliceosome. Further studies using larger sample sizes are required to understand the possible implications of transcriptomic variations on semen quality and fertility.
Collapse
Affiliation(s)
- Mani Arul Prakash
- Theriogenology Laboratory, Southern Regional Station of ICAR-National Dairy Research Institute, Adugodi, Bengaluru, 560030 Karnataka, India
| | - Arumugam Kumaresan
- Theriogenology Laboratory, Southern Regional Station of ICAR-National Dairy Research Institute, Adugodi, Bengaluru, 560030 Karnataka, India.
| | - Manish Kumar Sinha
- Theriogenology Laboratory, Southern Regional Station of ICAR-National Dairy Research Institute, Adugodi, Bengaluru, 560030 Karnataka, India
| | - Elango Kamaraj
- Theriogenology Laboratory, Southern Regional Station of ICAR-National Dairy Research Institute, Adugodi, Bengaluru, 560030 Karnataka, India
| | - Tushar Kumar Mohanty
- Animal Reproduction, Gynaecology and Obstetrics, National Dairy Research Institute, Karnal, 132001 Haryana, India
| | - Tirtha Kumar Datta
- Animal Biotechnology Centre, National Dairy Research Institute, Karnal, 132001 Haryana, India
| | - Jane M Morrell
- Clinical Sciences, Swedish University of Agricultural Sciences, 750 07 Uppsala, Sweden
| |
Collapse
|
15
|
Mishra DC, Sikka P, Yadav S, Bhati J, Paul SS, Jerome A, Singh I, Nath A, Budhlakoti N, Rao AR, Rai A, Chaturvedi KK. Identification and characterization of trait-specific SNPs using ddRAD sequencing in water buffalo. Genomics 2020; 112:3571-3578. [PMID: 32320820 DOI: 10.1016/j.ygeno.2020.04.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 03/19/2020] [Accepted: 04/17/2020] [Indexed: 12/14/2022]
Abstract
Single Nucleotide Polymorphism (SNP) is one of the important molecular markers widely used in animal breeding program for improvement of any desirable genetic traits. Considering this, the present study was carried out to identify, annotate and analyze the SNPs related to four important traits of buffalo viz. milk volume, age at first calving, post-partum cyclicity and feed conversion efficiency. We identified 246,495, 168,202, 74,136 and 194,747 genome-wide SNPs related to mentioned traits, respectively using ddRAD sequencing technique based on 85 samples of Murrah Buffaloes. Distribution of these SNPs were highest (61.69%) and lowest (1.78%) in intron and exon regions, respectively. Under coding regions, the SNPs for the four traits were further classified as synonymous (4697) and non-synonymous (3827). Moreover, Gene Ontology (GO) terms of identified genes assigned to various traits. These characterized SNPs will enhance the knowledge of cellular mechanism for enhancing productivity of water buffalo through molecular breeding.
Collapse
Affiliation(s)
- D C Mishra
- ICAR-Indian Agricultural Statistics Research Institute, New Delhi, India
| | - Poonam Sikka
- ICAR-Central Institute for Research on Buffaloes, Hisar, India
| | - Sunita Yadav
- ICAR-Indian Agricultural Statistics Research Institute, New Delhi, India
| | - Jyotika Bhati
- ICAR-Indian Agricultural Statistics Research Institute, New Delhi, India
| | - S S Paul
- ICAR-Central Institute for Research on Buffaloes, Hisar, India
| | - A Jerome
- ICAR-Central Institute for Research on Buffaloes, Hisar, India
| | - Inderjeet Singh
- ICAR-Central Institute for Research on Buffaloes, Hisar, India
| | - Abhigyan Nath
- ICAR-Central Institute for Research on Buffaloes, Hisar, India
| | - Neeraj Budhlakoti
- ICAR-Indian Agricultural Statistics Research Institute, New Delhi, India
| | - A R Rao
- ICAR-Indian Agricultural Statistics Research Institute, New Delhi, India
| | - Anil Rai
- ICAR-Indian Agricultural Statistics Research Institute, New Delhi, India
| | - K K Chaturvedi
- ICAR-Indian Agricultural Statistics Research Institute, New Delhi, India.
| |
Collapse
|