1
|
Zheng X, Tian S, Li T, Zhang S, Zhou X, Liu Y, Su R, Zhang M, Li B, Qi C, Guo G, Ma S, Sun K, Yang F, Hu Y, Yang C, Cui L, Shang Y, Guo C, Jin B, Guan L, Wang J, Ning W, Han Y. Host FSTL1 defines the impact of stem cell therapy on liver fibrosis by potentiating the early recruitment of inflammatory macrophages. Signal Transduct Target Ther 2025; 10:81. [PMID: 40050288 PMCID: PMC11885662 DOI: 10.1038/s41392-025-02162-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 12/30/2024] [Accepted: 02/01/2025] [Indexed: 03/09/2025] Open
Abstract
Adult stem cell therapy holds great promise for treating decompensated liver cirrhosis on the basis of animal studies, despite uncertainty about its clinical therapeutic efficacy and unclear underlying mechanisms. Here, we investigated the role of follistatin-like 1 (FSTL1), a profibrotic and proinflammatory matricellular protein, in inflammation-related heterogeneity in stem cell therapy. Our results showed that a high level of circulating FSTL1 is significantly correlated with therapeutic response in patients with cirrhosis. FSTL1 facilitated MSC-mediated early recruitment of Ly6C+ inflammatory macrophages within 24 h postinfusion, which was essential for the empowerment of MSCs and subsequent Ly6C-CX3CR1+ macrophage remodelling at 48 h postinfusion. Fstl1 deficiency abrogated early macrophage recruitment and effective Ly6C-CX3CR1+ macrophage accumulation, resulting in the poor antifibrotic effect of MSCs in mice. Whereas, recombinant FSTL1 protein restored the therapeutic efficacy of MSCs in CCl4-injured Fstl1+/- mice. Mechanistically, host FSTL1 enhanced rapid recycling of CCR2 to the membrane via activation of the CD14/TLR4/NF-κB/ATP6V1G2 axis, leading to early recruitment of Ly6C+ monocytes /macrophages. Taken together, our findings revealed that FSTL1 is a critical regulator of the fibrotic immune microenvironment and facilitates subsequent stem cell therapy. These data suggest that FSTL1 could serve as a predictive biomarker of stem cell therapy response in patients with liver cirrhosis.
Collapse
Grants
- 82270551 National Natural Science Foundation of China (National Science Foundation of China)
- 81900570 National Natural Science Foundation of China (National Science Foundation of China)
- 82303155 National Natural Science Foundation of China (National Science Foundation of China)
- 82372882 National Natural Science Foundation of China (National Science Foundation of China)
- This work was supported by the National Key R&D Program of China, 2020YFA0710803 (to J.W.), 2017YFA0105704 (to Y. H.), 2021YFC2500700 and 2024YFA1108500 (to W.N.) National Natural Science Foundation of China (NSFC) grants 81900570, 82470638 (to X.Z.), 82270551 (to Y. H.), 82270616 (to J.W.), 81900502 (to G.G.), 82303155 (T.L.), 82372882 (L.G.) and 82030001 (to W.N.) Key Research and Development Program of Shaanxi province, China No. 2021ZDLSF02-07 (to Y. H.)
- the National Key R&D Program of China, 2020YFA0710803
Collapse
Affiliation(s)
- Xiaohong Zheng
- Xijing Hospital of Digestive Diseases, State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Fourth Military Medical University, Xi'an, China
| | - Siyuan Tian
- Xijing Hospital of Digestive Diseases, State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Fourth Military Medical University, Xi'an, China
- Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an, China
| | - Ting Li
- Xijing Hospital of Digestive Diseases, State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Fourth Military Medical University, Xi'an, China
| | - Si Zhang
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, China
| | - Xia Zhou
- Xijing Hospital of Digestive Diseases, State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Fourth Military Medical University, Xi'an, China
| | - Yansheng Liu
- Xijing Hospital of Digestive Diseases, State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Fourth Military Medical University, Xi'an, China
| | - Rui Su
- Xijing Hospital of Digestive Diseases, State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Fourth Military Medical University, Xi'an, China
| | - Miao Zhang
- Xijing Hospital of Digestive Diseases, State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Fourth Military Medical University, Xi'an, China
| | - Bo Li
- Xijing Hospital of Digestive Diseases, State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Fourth Military Medical University, Xi'an, China
| | - Chao Qi
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, China
| | - Guanya Guo
- Xijing Hospital of Digestive Diseases, State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Fourth Military Medical University, Xi'an, China
| | - Shuoyi Ma
- Xijing Hospital of Digestive Diseases, State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Fourth Military Medical University, Xi'an, China
| | - Keshuai Sun
- Xijing Hospital of Digestive Diseases, State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Fourth Military Medical University, Xi'an, China
| | - Fangfang Yang
- Xijing Hospital of Digestive Diseases, State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Fourth Military Medical University, Xi'an, China
| | - Yinan Hu
- Xijing Hospital of Digestive Diseases, State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Fourth Military Medical University, Xi'an, China
| | - Chunmei Yang
- Xijing Hospital of Digestive Diseases, State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Fourth Military Medical University, Xi'an, China
| | - Lina Cui
- Xijing Hospital of Digestive Diseases, State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Fourth Military Medical University, Xi'an, China
| | - Yulong Shang
- Xijing Hospital of Digestive Diseases, State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Fourth Military Medical University, Xi'an, China
| | - Changcun Guo
- Xijing Hospital of Digestive Diseases, State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Fourth Military Medical University, Xi'an, China
| | - Boquan Jin
- Department of Immunology, Fourth Military Medical University, Xi'an, China
| | - Lei Guan
- Xijing Hospital of Digestive Diseases, State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Fourth Military Medical University, Xi'an, China
| | - Jingbo Wang
- Xijing Hospital of Digestive Diseases, State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Fourth Military Medical University, Xi'an, China.
- Science and Technology Innovation Research Institute, Tangdu Hospital, Fourth Military Medical University, Xi'an, China.
| | - Wen Ning
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, China.
| | - Ying Han
- Xijing Hospital of Digestive Diseases, State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Fourth Military Medical University, Xi'an, China.
| |
Collapse
|
2
|
Ying W, Yunqi Z, Deji L, Jian K, Fusheng Q. Follicular fluid HD-sevs-mir-128-3p is a key molecule in regulating bovine granulosa cells autophagy. Theriogenology 2024; 226:263-276. [PMID: 38954995 DOI: 10.1016/j.theriogenology.2024.06.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 06/21/2024] [Accepted: 06/24/2024] [Indexed: 07/04/2024]
Abstract
Follicular fluid (FF) is rich in extracellular vesicles (EVs). EVs carries a variety of miRNA involved in regulating follicular development, the function of cells in follicles, primordial follicular formation, follicular recruitment and selection, follicular atresia, oocyte communication, granulosa cells (GCs) function and luteinization and other biological processes of follicular development. Previous studies in our laboratory have shown that bovine follicular fluid (bFF) high density-small extracellular vesicles (HD-sEVs)-miRNA was enriched in autophagy-related pathways. However, the mechanism of bFF EVs carrying miRNA regulating GCs autophagy is not clear. Thus, this study carried out a series of studies on the previous HD-sEVs sequencing data and miR-128-3p contained in bFF HD-sEVs. A total of 38 differentially expressed genes were detected by RNA-Seq after overexpression of miR-128-3p in bovine GCs (bGCs). Through cell transfection, Western blot (WB) and Immunofluorescence (IF), it was proved that overexpression of miR-128-3p could promote the expression of LC3 (microtubule-associated protein I light chain 3), inhibit p62, promote the number of autophagosome, promote the formation of autophagy lysosome and autophagy flow, and activate bGCs autophagy. MiR-128-3p inhibitor significantly inhibited the expression of LC3 and monodansylcadaverine (MDC) in bGCs, and promoted the expression of autophagy substrate p62, indicating that HD-sEVs-miR-128-3p could activate bGCs autophagy. In addition, through double luciferase assay, bioinformatics analysis, WB and RT-qPCR, it was concluded that bFF HD-sEVs-miR-128-3p could target TFEB (transcription factor EB) and FoxO4 (Forkhead box O4) and activate GCs autophagy.
Collapse
Affiliation(s)
- Wang Ying
- Chongqing Key Laboratory of Forage &Herbivore, College of Veterinary Medicine, Southwest University, Beibei, Chongqing, 400715, China; Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Zhao Yunqi
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Luan Deji
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Kang Jian
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Quan Fusheng
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| |
Collapse
|
3
|
Wang Y, Wang J, Li Q, Xuan R, Guo Y, He P, Chao T. Characterization of MicroRNA expression profiles in the ovarian tissue of goats during the sexual maturity period. J Ovarian Res 2023; 16:234. [PMID: 38062510 PMCID: PMC10704810 DOI: 10.1186/s13048-023-01318-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Accepted: 11/27/2023] [Indexed: 12/18/2023] Open
Abstract
BACKGROUND The ovary is an important reproductive organ in mammals, and its development directly affects the sexual maturity and reproductive capacity of individuals. MicroRNAs (miRNAs) are recognized as regulators of reproductive physiological processes in various animals and have been shown to regulate ovarian development through typical targeting and translational repression. However, little is known about the regulatory role of miRNAs in ovarian tissue development during sexual maturity in goats. To comprehensively profile the different physiological stages of sexual maturation in goats, we performed small-RNA sequencing of ovarian tissue samples collected at four specific time points (1 day after birth (D1), 2 months old (M2), 4 months old (M4), and 6 months old (M6)). In addition, we used ELISAs to measure serum levels of reproductive hormones to study their temporal changes. RESULTS The results showed that serum levels of gonadotropin-releasing hormone, follicle-stimulating hormone, luteinizing hormone, oestradiol, progesterone, oxytocin, and prolactin were lower in goats at the D1 stage than at the other three developmental stages (P < 0.05). The secretion patterns of these seven hormones show a similar trend, with hormone levels reaching their peaks at 4 months of age. A total of 667 miRNAs were detected in 20 libraries, and 254 differentially expressed miRNAs and 3 groups of miRNA clusters that had unique expression patterns were identified (|log2-fold change|> 1, FDR < 0.05) in the 6 comparison groups. RT‒qPCR was employed to confirm that the expression pattern of the 15 selected miRNAs was consistent with the Illumina sequencing results. Gene ontology analyses revealed significant enrichment of GO terms such as cell proliferation regulation, epithelial cell development, and amino acid transport, as well as important signaling pathways including the MAPK signaling pathway, the PI3K-Akt signaling pathway, and the oestrogen signaling pathway. Further miRNA‒mRNA regulation network analysis revealed that 8 differentially expressed miRNAs (chi-miR-1343, chi-miR-328-3p, chi-miR-877-3p, chi-miR-296-3p, chi-miR-128-5p, chi-miR-331-3p, chi-miR-342-5p and chi-miR-34a) have important regulatory roles in ovarian cell proliferation, hormone secretion and metabolism-related biological processes. CONCLUSIONS Overall, our study investigated the changes in serum hormone and miRNA levels in the ovaries. These data provide a valuable resource for understanding the molecular regulatory mechanisms of miRNAs in ovarian tissue during the sexual maturity period in goats.
Collapse
Affiliation(s)
- Yanyan Wang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an, Shandong, China
- Key Laboratory of Efficient Utilization of Non-Grain Feed Resources (Co-Construction By Ministry and Province), Ministry of Agriculture and Rural Affairs, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an, Shandong, China
| | - Jianmin Wang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an, Shandong, China
- Key Laboratory of Efficient Utilization of Non-Grain Feed Resources (Co-Construction By Ministry and Province), Ministry of Agriculture and Rural Affairs, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an, Shandong, China
| | - Qing Li
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an, Shandong, China
- Key Laboratory of Efficient Utilization of Non-Grain Feed Resources (Co-Construction By Ministry and Province), Ministry of Agriculture and Rural Affairs, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an, Shandong, China
| | - Rong Xuan
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an, Shandong, China
- Key Laboratory of Efficient Utilization of Non-Grain Feed Resources (Co-Construction By Ministry and Province), Ministry of Agriculture and Rural Affairs, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an, Shandong, China
| | - Yanfei Guo
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an, Shandong, China
- Key Laboratory of Efficient Utilization of Non-Grain Feed Resources (Co-Construction By Ministry and Province), Ministry of Agriculture and Rural Affairs, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an, Shandong, China
| | - Peipei He
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an, Shandong, China
- Key Laboratory of Efficient Utilization of Non-Grain Feed Resources (Co-Construction By Ministry and Province), Ministry of Agriculture and Rural Affairs, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an, Shandong, China
| | - Tianle Chao
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an, Shandong, China.
- Key Laboratory of Efficient Utilization of Non-Grain Feed Resources (Co-Construction By Ministry and Province), Ministry of Agriculture and Rural Affairs, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an, Shandong, China.
| |
Collapse
|