1
|
Yang H, Jiang P, Liu D, Wang HQ, Deng Q, Niu X, Lu L, Dai H, Wang H, Yang W. Matrix Metalloproteinase 11 Is a Potential Therapeutic Target in Lung Adenocarcinoma. Mol Ther Oncolytics 2019; 14:82-93. [PMID: 31024988 PMCID: PMC6477516 DOI: 10.1016/j.omto.2019.03.012] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2018] [Accepted: 03/27/2019] [Indexed: 12/29/2022] Open
Abstract
Lung cancer is one of the leading causes of cancer-associated death, with the etiology largely unknown. The aim of this study was to identify key driver genes with therapeutic potentials in lung adenocarcinoma (LUAD). Transcriptome microarray data from four GEO datasets (GEO: GSE7670, GSE10072, GSE68465, and GSE43458) were jointly analyzed for differentially expressed genes (DEGs). Ontologic analysis showed that most of the upregulated DEGs enriched in collagen catabolic and fibril organization processes were regulated by matrix metalloproteinases (MMPs). Matrix metalloproteinase 11 (MMP11), the highest upregulated MMP family member in LUAD-transformed cells, acted in an autocrine manner and was significantly increased in sera of LUAD patients. MMP11 depletion severely impaired LUAD cell proliferation, migration, and invasion in vitro, in line with retarded tumor growth in xenograft models. Treatment of different human LUAD cell lines with anti-MMP11 antibody significantly retarded cell growth and migration. Administration of anti-MMP11 antibody at a dose of 1 μg/g body weight significantly suppressed tumor growth in xenograft models. These findings indicate that MMP11 is a key cancer driver gene in LUAD and is an appealing target for antibody therapy.
Collapse
Affiliation(s)
- Haoran Yang
- Anhui Province Key Laboratory of Medical Physics and Technology, Center of Medical Physics and Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
- University of Science and Technology of China, Hefei 230026, China
- Cancer Hospital, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
| | - Peng Jiang
- Anhui Province Key Laboratory of Medical Physics and Technology, Center of Medical Physics and Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
- University of Science and Technology of China, Hefei 230026, China
- Cancer Hospital, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
| | - Dongyan Liu
- Anhui Province Key Laboratory of Medical Physics and Technology, Center of Medical Physics and Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
- University of Science and Technology of China, Hefei 230026, China
- Cancer Hospital, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
| | - Hong-Qiang Wang
- Biological Molecular Information System Lab., Institute of Intelligent Machines, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
| | - Qingmei Deng
- Cancer Hospital, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
| | - Xiaojie Niu
- Department of Anatomy, Shanxi Medical University, Taiyuan 030024, China
| | - Li Lu
- Department of Anatomy, Shanxi Medical University, Taiyuan 030024, China
| | - Haiming Dai
- Anhui Province Key Laboratory of Medical Physics and Technology, Center of Medical Physics and Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
- Cancer Hospital, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
| | - Hongzhi Wang
- Anhui Province Key Laboratory of Medical Physics and Technology, Center of Medical Physics and Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
- Cancer Hospital, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
| | - Wulin Yang
- Anhui Province Key Laboratory of Medical Physics and Technology, Center of Medical Physics and Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
- Cancer Hospital, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
| |
Collapse
|
2
|
Orvis T, Hepperla A, Walter V, Song S, Simon J, Parker J, Wilkerson MD, Desai N, Major MB, Hayes DN, Davis IJ, Weissman B. BRG1/SMARCA4 inactivation promotes non-small cell lung cancer aggressiveness by altering chromatin organization. Cancer Res 2014; 74:6486-6498. [PMID: 25115300 DOI: 10.1158/0008-5472.can-14-0061] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
SWI/SNF chromatin remodeling complexes regulate critical cellular processes, including cell-cycle control, programmed cell death, differentiation, genomic instability, and DNA repair. Inactivation of this class of chromatin remodeling complex has been associated with a variety of malignancies, including lung, ovarian, renal, liver, and pediatric cancers. In particular, approximately 10% of primary human lung non-small cell lung cancers (NSCLC) display attenuations in the BRG1 ATPase, a core factor in SWI/SNF complexes. To evaluate the role of BRG1 attenuation in NSCLC development, we examined the effect of BRG1 silencing in primary and established human NSCLC cells. BRG1 loss altered cellular morphology and increased tumorigenic potential. Gene expression analyses showed reduced expression of genes known to be associated with progression of human NSCLC. We demonstrated that BRG1 losses in NSCLC cells were associated with variations in chromatin structure, including differences in nucleosome positioning and occupancy surrounding transcriptional start sites of disease-relevant genes. Our results offer direct evidence that BRG1 attenuation contributes to NSCLC aggressiveness by altering nucleosome positioning at a wide range of genes, including key cancer-associated genes.
Collapse
Affiliation(s)
- Tess Orvis
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina , USA
| | - Austin Hepperla
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina , USA.,Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Vonn Walter
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina , USA
| | - Shujie Song
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina , USA.,Cancer Center, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, P.R. China
| | - Jeremy Simon
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina , USA.,Curriculum in Bioinformatics and Computational Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Joel Parker
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina , USA.,Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina , USA
| | - Matthew D Wilkerson
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina , USA.,Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina , USA
| | - Nisarg Desai
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina , USA
| | - Michael B Major
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina , USA.,Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, NC 27599
| | - D Neil Hayes
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina , USA.,Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Ian J Davis
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina , USA.,Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina , USA.,Department of Pediatrics and Carolina Center for Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina , USA
| | - Bernard Weissman
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina , USA.,Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| |
Collapse
|
3
|
Shi S, Deng YZ, Zhao JS, Ji XD, Shi J, Feng YX, Li G, Li JJ, Zhu D, Koeffler HP, Zhao Y, Xie D. RACK1 promotes non-small-cell lung cancer tumorigenicity through activating sonic hedgehog signaling pathway. J Biol Chem 2012; 287:7845-58. [PMID: 22262830 DOI: 10.1074/jbc.m111.315416] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Non-small-cell lung cancer (NSCLC) is a deadly disease due to lack of effective diagnosis biomarker and therapeutic target. Much effort has been made in defining gene defects in NSCLC, but its full molecular pathogenesis remains unexplored. Here, we found RACK1 (receptor of activated kinase 1) was elevated in most NSCLC, and its expression level correlated with key pathological characteristics including tumor differentiation, stage, and metastasis. In addition, RACK1 activated sonic hedgehog signaling pathway by interacting with and activating Smoothened to mediate Gli1-dependent transcription in NSCLC cells. And silencing RACK1 dramatically inhibited in vivo tumor growth and metastasis by blocking the sonic hedgehog signaling pathway. These results suggest that RACK1 represents a new promising diagnosis biomarker and therapeutic target for NSCLC.
Collapse
Affiliation(s)
- Shuo Shi
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences and Graduate School of Chinese Academy of Sciences, Shanghai 200031, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Li C, Zhang Y, Lu Y, Cui Z, Yu M, Zhang S, Xue X. Evidence of the cross talk between Wnt and Notch signaling pathways in non-small-cell lung cancer (NSCLC): Notch3-siRNA weakens the effect of LiCl on the cell cycle of NSCLC cell lines. J Cancer Res Clin Oncol 2011; 137:771-8. [PMID: 20614134 DOI: 10.1007/s00432-010-0934-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2009] [Accepted: 06/21/2010] [Indexed: 10/19/2022]
Abstract
BACKGROUND Aberrant activations of Wnt and Notch signaling pathways are individually reported to be associated with the pathogenesis of non-small-cell lung cancer (NSCLC). However, the data about the cross talk between the two signaling pathways are still limited. To elucidate potential Wnt/Notch cross talk within NSCLC, we examined the impact of Notch3 activity on LiCl-induced cell cycle changes. METHODS The lung cancer cell lines were treated with LiCl, a Wnt activator, in the absence or presence of Notch3-siRNA. Cell cycles and the expression of the regulators of cell cycle, c-MYC, p21 and Skp2 (S phase kinase-associated protein 2) were measured after treatment. RESULTS The treatment with LiCl increased the percent of cells at S phase and G phase and the expression of c-MYC and Skp2 and decreased the expression of p21. Moreover, the expression of Notch3 and its down-stream genes, HES-1 and HEYL, was up-regulated by LiCl. Notch3-siRNA weakened the effect of LiCl on the cell cycle and resulted in attenuation of the LiCl-induced increment of c-MYC and Skp2 and the LiCl-induced decrement of p21. CONCLUSIONS These data suggest that Notch3 activation cooperatively takes part in the LiCl-induced cell cycle changes, at least partially, associated with c-MYC, Skp2 and p21.
Collapse
Affiliation(s)
- Chunyan Li
- Center of Laboratory Technology and Experimental Medicine, China Medical University, 110001, Shenyang, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
5
|
Tailoring tyrosine kinase inhibitors to fit the lung cancer genome. Transl Oncol 2011; 4:59-70. [PMID: 21461169 DOI: 10.1593/tlo.10241] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2010] [Revised: 10/20/2010] [Accepted: 11/01/2010] [Indexed: 12/19/2022] Open
Abstract
Tyrosine kinase inhibitors (TKIs) have been in use as cancer therapeutics for nearly a decade, and their utility in targeting specific malignancies with defined genetic lesions has proven to be remarkably effective. Recent efforts to characterize the spectrum of genetic lesions found in non-small cell lung carcinoma (NSCLC) have provided important insights into the molecular basis of this disease and have also revealed a wide array of tyrosine kinases that might be effectively targeted for rationally designed therapies. The findings of these studies, however, also provide a cautionary tale about the limitations of single-agent therapies, which fail to account for the genetic heterogeneity and pathway redundancy that characterize advanced NSCLC. Emergence of drug resistance mechanisms to specific TKIs, such as gefitinib and erlotinib, suggests that more sophisticated chemotherapeutic paradigms that target multiple pathways at the same time will be required to effectively treat this disease.
Collapse
|
6
|
Li YC, Deng YH, Guo ZH, Zhang MM, Zhu J, Pu CL, Xiang CP, Guo CB. Prognostic value of hedgehog signal component expressions in hepatoblastoma patients. Eur J Med Res 2011; 15:468-74. [PMID: 21159571 PMCID: PMC3352655 DOI: 10.1186/2047-783x-15-11-468] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
OBJECTIVE Activation of hedgehog (Hh) pathway has been implicated in the development of human malignancies. Hh as well as related downstream target genes has been extensively studied in many kinds of malignant tumours for clinical diagnostic or prognostic utilities. This study aimed at investigating whether Hh molecules provides a molecular marker of hepatoblastoma malignancy. METHODS We obtained tissue sections from 32 patients with hepatoblastoma as well as cholestasis and normal control. Immunohistochemical analysis were performed to determine Hh signal components in human hepatoblastoma. The prognostic significance of single expression of Hh signal components were evaluated using Cox proportional hazards regression models and Kaplan-Meier survival analysis for statistical analysis. RESULTS Expression of Hh signal components showed an increase in hepatoblastoma compared with cholestasis and normal tissues. There was a positive correlation between Smo or Gli1 expression and tumor clinicopathological features, such as histological type, tumor grade, tumor size and clinical stage. Both Smo or Gli1 protein high expression was significantly associated with poor prognosis by univariate analyses and multivariate analyses. CONCLUSIONS Abnormal Hh signaling activation plays important roles in the malignant potential of hepatoblastoma. Gli1 expression is an independent prognostic marker.
Collapse
Affiliation(s)
- Ying-Cun Li
- Department of Hepatobiliary Surgery, Children's Hospital of Chongqing Medical University, 22 Zhongshan Rd., Chongqing, 400014, PR China
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Abstract
Claiming more than 150,000 lives each year, lung cancer is the deadliest cancer in the USA. First-line treatments in lung cancer include surgical resection and chemotherapy, the latter of which offers only modest survival benefits at the expense of often severe and debilitating side effects. Recent advances in elucidating the molecular biology of lung carcinogenesis have elucidated novel drug targets, and treatments are rapidly evolving into specialized agents that hone in on specific aspects of the disease. Of particular interest is blocking tumor growth by targeting the physiological processes surrounding angiogenesis, pro-tumorigenic growth factor activation, anti-apoptotic cascades and other cancer-promoting signal transduction events. This article looks at several areas of interest to lung cancer therapeutics and considers the current state of affairs surrounding the development of these therapies.
Collapse
Affiliation(s)
- M Roshni Ray
- Thoracic Oncology Program, Department of Surgery, University of California, San Francisco, CA 94115, USA
| | - David Jablons
- Thoracic Oncology Program, Department of Surgery, University of California, San Francisco, CA 94115, USA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA 94143, USA
| | - Biao He
- Thoracic Oncology Program, Department of Surgery, University of California, San Francisco, CA 94115, USA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA 94143, USA
| |
Collapse
|
8
|
Yagui-Beltrán A, Coussens LM, Jablons DM. Respiratory Homeostasis and Exploitation of the Immune System for Lung Cancer Vaccines. ACTA ACUST UNITED AC 2009; 58:40-48. [PMID: 22368692 DOI: 10.17925/ohr.2009.05.1.40] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Lung cancer is the leading cause of all cancer deaths in the US. The international scientific and clinical community has made significant advances toward understanding specific molecular mechanisms underlying lung carcinogenesis; however, despite these insights and advances in surgery and chemoradiotherapy, the prognosis for non-small-cell lung cancer (NSCLC) remains poor. Nonetheless, significant effort is being focused on advancing translational research evaluating the efficacy of novel targeted therapeutic strategies for lung cancer. Illustrative examples of this include antagonists of the epidermal growth factor receptor (EGFR), tyrosine kinase inhibitors (TKIs) such as gefitinib and erlotinib, and a diverse assortment of anti-angiogenic compounds targeting growth factors and/or their receptors that regulate tumor-associated angiogenic programs. In addition, with the increased awareness of the significant role chronically activated leukocytes play as potentiators of solid-tumor development, the role of innate and adaptive immune cells as regulators of lung carcinogenesis is being examined. While some of these studies are examining how novel therapeutic strategies may enhance the efficacy of lung cancer vaccines, others are evaluating the intrinsic characteristics of the immune response to lung cancer in order to identify rate-limiting molecular and/or cellular programs to target with novel anticancer therapeutics. In this article, we explore important aspects of the immune system and its role in regulating normal respiratory homeostasis compared with the immune response accompanying development of lung cancer. These hallmarks are then discussed in the context of recent efforts to develop lung cancer vaccines, where we have highlighted important concepts that must be taken into consideration for future development of novel therapeutic strategies and clinical trials assessing their efficacy.
Collapse
Affiliation(s)
- Adam Yagui-Beltrán
- Post-doctoral Fellow, Helen Diller Family Comprehensive Cancer Center, University of California San Francisco
| | | | | |
Collapse
|