1
|
Etscheid M, Hanschmann KM, Sandset PM, Kanse SM. Development of a Factor VII Activating Protease (FSAP) generation assay and its application in studying FSAP in venous thrombosis. Thromb Res 2022; 220:24-34. [DOI: 10.1016/j.thromres.2022.09.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 09/21/2022] [Accepted: 09/29/2022] [Indexed: 11/17/2022]
|
2
|
Kim JY, Manna D, Etscheid M, Leergaard TB, Kanse SM. Factor VII activating protease (FSAP) inhibits the outcome of ischemic stroke in mouse models. FASEB J 2022; 36:e22564. [PMID: 36165219 DOI: 10.1096/fj.202200828r] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 08/30/2022] [Accepted: 09/12/2022] [Indexed: 12/16/2022]
Abstract
The outcome of ischemic stroke can be improved by further refinements of thrombolysis and reperfusion strategies. Factor VII activating protease (FSAP) is a circulating serine protease that could be important in this context. Its levels are raised in patients as well as mice after stroke and a single nucleotide polymorphism (SNP) in the coding sequence, which results in an inactive enzyme, is linked to an increased risk of stroke. In vitro, FSAP cleaves fibrinogen to promote fibrinolysis, activates protease-activated receptors, and decreases the cellular cytotoxicity of histones. Based on these facts, we hypothesized that FSAP can be used as a treatment for ischemic stroke. A combination of tissue plasminogen activator (tPA), a thrombolytic drug, and recombinant serine protease domain of FSAP (FSAP-SPD) improved regional cerebral perfusion and neurological outcome and reduced infarct size in a mouse model of thromboembolic stroke. FSAP-SPD also improved stroke outcomes and diminished the negative consequences of co-treatment with tPA in the transient middle cerebral artery occlusion model of stroke without altering cerebral perfusion. The inactive MI-isoform of FSAP had no impact in either model. FSAP enhanced the lysis of blood clots in vitro, but in the tail transection model of hemostasis, FSAP-SPD treatment provoked a faster clotting time indicating that it also has pro-coagulant actions. Thus, apart from enhancing thrombolysis, FSAP has multiple effects on stroke progression and represents a promising novel therapeutic strategy in the treatment of ischemic stroke.
Collapse
Affiliation(s)
- Jeong Yeon Kim
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Dipankar Manna
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Michael Etscheid
- Division of Hematology/Transfusion Medicine, Paul Ehrlich Institut, Langen, Germany
| | - Trygve B Leergaard
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Sandip M Kanse
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| |
Collapse
|
3
|
Berge-Seidl S, Nielsen NV, Rodriguez Alfonso AA, Etscheid M, Kandanur SPS, Haug BE, Stensland M, Thiede B, Karacan M, Preising N, Wiese S, Ständker L, Declerck PJ, Løset GÅ, Kanse SM. Identification of a Phage Display-Derived Peptide Interacting with the N-Terminal Region of Factor VII Activating Protease (FSAP) Enables Characterization of Zymogen Activation. ACS Chem Biol 2022; 17:2631-2642. [PMID: 36070465 PMCID: PMC9486805 DOI: 10.1021/acschembio.2c00538] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 08/25/2022] [Indexed: 01/19/2023]
Abstract
Factor VII Activating protease (FSAP) has a protective effect in diverse disease conditions as inferred from studies in FSAP-/- mice and humans deficient in FSAP activity due to single-nucleotide polymorphism. The zymogen form of FSAP in plasma is activated by extracellular histones that are released during tissue injury or inflammation or by positively charged surfaces. However, it is not clear whether this activation mechanism is specific and amenable to manipulation. Using a phage display approach, we have identified a Cys-constrained 11 amino acid peptide, NNKC9/41, that activates pro-FSAP in plasma. The synthetic linear peptide has a propensity to cyclize through the terminal Cys groups, of which the antiparallel cyclic dimer, but not the monocyclic peptide, is the active component. Other commonly found zymogens in the plasma, related to the hemostasis system, were not activated. Binding studies with FSAP domain deletion mutants indicate that the N-terminus of FSAP is the key interaction site of this peptide. In a monoclonal antibody screen, we identified MA-FSAP-38C7 that prevented the activation of pro-FSAP by the peptide. This antibody bound to the LESLDP sequence (amino acids 30-35) in an intrinsically disordered stretch in the N-terminus of FSAP. The plasma clotting time was shortened by NNKC9/41, and this was reversed by MA-FSAP-38C7, demonstrating the utility of this peptide. Peptide NNKC9/41 will be useful as a tool to delineate the molecular mechanism of activation of pro-FSAP, elucidate its biological role, and provide a starting point for the pharmacological manipulation of FSAP activity.
Collapse
Affiliation(s)
| | - Nis Valentin Nielsen
- Oslo
University Hospital and Medical Faculty, University of Oslo, 0372 Oslo, Norway
| | | | | | | | - Bengt Erik Haug
- Department
of Chemistry and Center for Pharmacy, University
of Bergen, 5007 Bergen, Norway
| | - Maria Stensland
- Oslo
University Hospital and Medical Faculty, University of Oslo, 0372 Oslo, Norway
| | - Bernd Thiede
- Department
of Biosciences, University of Oslo, 0371 Oslo, Norway
| | | | | | | | | | - Paul J. Declerck
- Department
of Pharmaceutical and Pharmacological Sciences, Katholieke Universiteit Leuven, 3000 Leuven, Belgium
| | - Geir Åge Løset
- Department
of Biosciences, University of Oslo, 0371 Oslo, Norway
- Nextera
AS, 0349 Oslo, Norway
| | - Sandip M. Kanse
- Oslo
University Hospital and Medical Faculty, University of Oslo, 0372 Oslo, Norway
| |
Collapse
|
4
|
Gramstad OR, Kandanur SPS, Etscheid M, Nielsen EW, Kanse SM. Factor VII activating protease (FSAP) is not essential in the pathophysiology of angioedema in patients with C1 inhibitor deficiency. Mol Immunol 2021; 142:95-104. [PMID: 34973499 DOI: 10.1016/j.molimm.2021.11.019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 11/20/2021] [Accepted: 11/30/2021] [Indexed: 01/08/2023]
Abstract
BACKGROUND Excessive bradykinin (BK) generation from high molecular weight kininogen (HK) by plasma kallikrein (PK) due to lack of protease inhibition is central to the pathophysiology of hereditary angioedema (HAE). Inadequate protease inhibition may contribute to HAE through a number of plasma proteases including factor VII activating protease (FSAP) that can also cleave HK. OBJECTIVE To investigate the interaction between FSAP and C1 inhibitor (C1Inh) and evaluate the potential role of FSAP in HAE with C1Inh deficiency. MATERIALS AND METHODS Plasma samples from 20 persons with HAE types 1 or 2 in remission were studied and compared to healthy controls. We measured and compared antigenic FSAP levels, spontaneous FSAP activity, FSAP generation potential, activation of plasma pre-kallikrein (PPK) by FSAP, and the formation of FSAP-C1Inh and FSAP-alpha2-antiplasmin (FSAP-α2AP) complexes. Furthermore, we measured HK cleavage and PK activation after activation of endogenous pro-FSAP and after addition of exogenous FSAP. RESULTS In plasma from HAE patients, there is increased basal FSAP activity compared to healthy volunteers. HAE plasma exhibits decreased formation of FSAP-C1Inh complexes and increased formation of FSAP-α2AP complexes in histone-activated plasma. Although exogenous FSAP can cleave HK in plasma, this was not seen when endogenous plasma pro-FSAP was activated with histones in either group. PK was also not activated by FSAP in plasma. CONCLUSION In this study, we established that FSAP activity is increased and the pattern of FSAP-inhibitor complexes is altered in HAE patients. However, we did not find evidence suggesting that FSAP contributes directly to HAE attacks.
Collapse
Affiliation(s)
- Olav Rogde Gramstad
- Department of Dermatology and Venerology, Oslo University Hospital, Oslo, Norway.
| | | | - Michael Etscheid
- Department of Haematology/Transfusion Medicine, Paul Ehrlich Institute, Langen, Germany
| | - Erik Waage Nielsen
- Department of Anesthesia and Intensive Care Medicine, Surgical Clinic, Nordland Hospital, Bodø, Norway; Faculty of Nursing and Health Sciences, Nord University, Bodø, Norway; Institute of Clinical Medicine, University of Tromsø, Tromsø, Norway; Faculty of Medicine, Institute of Clinical Medicine, University of Oslo, Norway
| | | |
Collapse
|
5
|
Artunc F, Bohnert BN, Schneider JC, Staudner T, Sure F, Ilyaskin AV, Wörn M, Essigke D, Janessa A, Nielsen NV, Birkenfeld AL, Etscheid M, Haerteis S, Korbmacher C, Kanse SM. Proteolytic activation of the epithelial sodium channel (ENaC) by factor VII activating protease (FSAP) and its relevance for sodium retention in nephrotic mice. Pflugers Arch 2021; 474:217-229. [PMID: 34870751 PMCID: PMC8766372 DOI: 10.1007/s00424-021-02639-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 10/05/2021] [Accepted: 10/18/2021] [Indexed: 12/18/2022]
Abstract
Proteolytic activation of the epithelial sodium channel (ENaC) by aberrantly filtered serine proteases is thought to contribute to renal sodium retention in nephrotic syndrome. However, the identity of the responsible proteases remains elusive. This study evaluated factor VII activating protease (FSAP) as a candidate in this context. We analyzed FSAP in the urine of patients with nephrotic syndrome and nephrotic mice and investigated its ability to activate human ENaC expressed in Xenopus laevis oocytes. Moreover, we studied sodium retention in FSAP-deficient mice (Habp2−/−) with experimental nephrotic syndrome induced by doxorubicin. In urine samples from nephrotic humans, high concentrations of FSAP were detected both as zymogen and in its active state. Recombinant serine protease domain of FSAP stimulated ENaC-mediated whole-cell currents in a time- and concentration-dependent manner. Mutating the putative prostasin cleavage site in γ-ENaC (γRKRK178AAAA) prevented channel stimulation by the serine protease domain of FSAP. In a mouse model for nephrotic syndrome, active FSAP was present in nephrotic urine of Habp2+/+ but not of Habp2−/− mice. However, Habp2−/− mice were not protected from sodium retention compared to nephrotic Habp2+/+ mice. Western blot analysis revealed that in nephrotic Habp2−/− mice, proteolytic cleavage of α- and γ-ENaC was similar to that in nephrotic Habp2+/+ animals. In conclusion, active FSAP is excreted in the urine of nephrotic patients and mice and activates ENaC in vitro involving the putative prostasin cleavage site of γ-ENaC. However, endogenous FSAP is not essential for sodium retention in nephrotic mice.
Collapse
Affiliation(s)
- Ferruh Artunc
- Department of Internal Medicine, Division of Endocrinology, Diabetology and Nephrology, University Hospital Tübingen, Tubingen, Germany. .,Institute of Diabetes Research and Metabolic Diseases (IDM) of the Helmholtz Center Munich at the University Tübingen, Tubingen, Germany. .,German Center for Diabetes Research (DZD) at the University Tübingen, Tubingen, Germany.
| | - Bernhard N Bohnert
- Department of Internal Medicine, Division of Endocrinology, Diabetology and Nephrology, University Hospital Tübingen, Tubingen, Germany.,Institute of Diabetes Research and Metabolic Diseases (IDM) of the Helmholtz Center Munich at the University Tübingen, Tubingen, Germany.,German Center for Diabetes Research (DZD) at the University Tübingen, Tubingen, Germany
| | - Jonas C Schneider
- Department of Internal Medicine, Division of Endocrinology, Diabetology and Nephrology, University Hospital Tübingen, Tubingen, Germany
| | - Tobias Staudner
- Institute of Cellular and Molecular Physiology, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Florian Sure
- Institute of Cellular and Molecular Physiology, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Alexandr V Ilyaskin
- Institute of Cellular and Molecular Physiology, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Matthias Wörn
- Department of Internal Medicine, Division of Endocrinology, Diabetology and Nephrology, University Hospital Tübingen, Tubingen, Germany
| | - Daniel Essigke
- Department of Internal Medicine, Division of Endocrinology, Diabetology and Nephrology, University Hospital Tübingen, Tubingen, Germany.,Institute of Diabetes Research and Metabolic Diseases (IDM) of the Helmholtz Center Munich at the University Tübingen, Tubingen, Germany.,German Center for Diabetes Research (DZD) at the University Tübingen, Tubingen, Germany
| | - Andrea Janessa
- Department of Internal Medicine, Division of Endocrinology, Diabetology and Nephrology, University Hospital Tübingen, Tubingen, Germany
| | - Nis V Nielsen
- Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Andreas L Birkenfeld
- Department of Internal Medicine, Division of Endocrinology, Diabetology and Nephrology, University Hospital Tübingen, Tubingen, Germany.,Institute of Diabetes Research and Metabolic Diseases (IDM) of the Helmholtz Center Munich at the University Tübingen, Tubingen, Germany.,German Center for Diabetes Research (DZD) at the University Tübingen, Tubingen, Germany
| | | | - Silke Haerteis
- Institute of Cellular and Molecular Physiology, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany.,Institute of Anatomy, University of Regensburg, Regensburg, Germany
| | - Christoph Korbmacher
- Institute of Cellular and Molecular Physiology, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Sandip M Kanse
- Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| |
Collapse
|
6
|
Chen S, Yim JJ, Bogyo M. Synthetic and biological approaches to map substrate specificities of proteases. Biol Chem 2020; 401:165-182. [PMID: 31639098 DOI: 10.1515/hsz-2019-0332] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 10/11/2019] [Indexed: 02/07/2023]
Abstract
Proteases are regulators of diverse biological pathways including protein catabolism, antigen processing and inflammation, as well as various disease conditions, such as malignant metastasis, viral infection and parasite invasion. The identification of substrates of a given protease is essential to understand its function and this information can also aid in the design of specific inhibitors and active site probes. However, the diversity of putative protein and peptide substrates makes connecting a protease to its downstream substrates technically difficult and time-consuming. To address this challenge in protease research, a range of methods have been developed to identify natural protein substrates as well as map the overall substrate specificity patterns of proteases. In this review, we highlight recent examples of both synthetic and biological methods that are being used to define the substrate specificity of protease so that new protease-specific tools and therapeutic agents can be developed.
Collapse
Affiliation(s)
- Shiyu Chen
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Joshua J Yim
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Matthew Bogyo
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA.,Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA
| |
Collapse
|
7
|
Breidenbach J, Bartz U, Gütschow M. Coumarin as a structural component of substrates and probes for serine and cysteine proteases. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2020; 1868:140445. [PMID: 32405284 PMCID: PMC7219385 DOI: 10.1016/j.bbapap.2020.140445] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 04/23/2020] [Accepted: 05/07/2020] [Indexed: 02/08/2023]
Abstract
Coumarins represent well-established structures to introduce fluorescence into tool compounds for biochemical investigations. They are valued for their small size, chemical stability and accessibility as well as their tunable photochemical properties. As components of fluorophore/quencher pairs or FRET donor/acceptor pairs, coumarins have frequently been applied in substrate mapping approaches for serine and cysteine proteases. This review also focuses on the incorporation of coumarins into the side chain of amino acids and the exploitation of the resulting fluorescent amino acids for the positional profiling of protease substrates. The protease-inhibiting properties of certain coumarin derivatives and the utilization of coumarin moieties to assemble activity-based probes for serine and cysteine proteases are discussed as well. Coumarins represent well-established structures to introduce fluorescence into tool compounds for biochemical investigations. They are valued for their small size, chemical stability and accessibility as well as their tunable photochemical properties. Coumarins are components of fluorophore/quencher pairs or FRET donor/acceptor pairs in substrate mapping of proteases. Coumarins have been incorporated into amino acids side chains to be used for the positional profiling of protease substrates. Coumarins have protease-inhibiting properties and are used for activity-based probes for serine and cysteine proteases.
Collapse
Affiliation(s)
- Julian Breidenbach
- Pharmaceutical Institute, Department of Pharmaceutical & Medicinal Chemistry, University of Bonn, An der Immenburg 4, 53121 Bonn, Germany
| | - Ulrike Bartz
- Department of Natural Sciences, University of Applied Sciences Bonn-Rhein-Sieg, von-Liebig-Str. 20, 53359 Rheinbach, Germany
| | - Michael Gütschow
- Pharmaceutical Institute, Department of Pharmaceutical & Medicinal Chemistry, University of Bonn, An der Immenburg 4, 53121 Bonn, Germany.
| |
Collapse
|
8
|
Characterization of the enzymatic activity of the serine protease domain of Factor VII activating protease (FSAP). Sci Rep 2019; 9:18990. [PMID: 31831842 PMCID: PMC6908674 DOI: 10.1038/s41598-019-55531-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Accepted: 11/30/2019] [Indexed: 12/18/2022] Open
Abstract
Factor VII (FVII) activating protease (FSAP) is a circulating serine protease. Human genetic studies, based on the Marburg I (MI) (Gly221Glu, chymotrypsin numbering system) polymorphism, implicate FSAP in the pathogenesis of many diseases. Here, we describe the molecular and functional changes caused by the Gly221Glu substitution in the 220 loop using recombinant proteins expressed in E. coli. The serine protease domain (SPD) of wild type (WT) FSAP displayed auto-catalytic activation whereas the MI isoform displayed very low autocatalytic activation and low proteolytic activity against the chromogenic substrate S-2288, Factor VII, tissue factor pathway inhibitor as well as pro-urokinase. Introduction of a thermolysin cleavage site in the activation position (Arg15Gln) led to cleavage of both WT- and MI-SPD and the resulting WT-SPD, but not the MI-SPD, was active. Mutating the Gly221 position to Asp, Gln and Leu led to a loss of activity whereas the Ala substitution was partially active. These results suggest a disturbance of the active site, or non-accessibility of the substrate to the active site in MI-SPD. With respect to regulation with metal ions, calcium, more than sodium, increased the enzymatic activity of WT-SPD. Thus, we describe a novel method for the production of recombinant FSAP-SPD to understand the role of the MI-single nucleotide polymorphism (SNP) in the regulation of its activity.
Collapse
|