1
|
Martin DR, Mutombwera AT, Madiehe AM, Onani MO, Meyer M, Cloete R. Molecular modeling and simulation studies of SELEX-derived high-affinity DNA aptamers to the Ebola virus nucleoprotein. J Biomol Struct Dyn 2024:1-18. [PMID: 38217874 DOI: 10.1080/07391102.2024.2302922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 01/03/2024] [Indexed: 01/15/2024]
Abstract
Ebola viral disease (EVD) is a highly infectious and potentially fatal illness with a case fatality rate ranging from 25% to 90%. To effectively control its spread, there is a need for rapid, reliable and lowcost point-of-care (P OC) diagnostic tests. While various EVD diagnostic tests exist, few are P OC tests, and many are not cost-effective. The use of antibodies in these tests has limitations, prompting the exploration of aptamers as potential alternatives. Various proteins from the Ebola virus (EBOV) proteome, including EBOV nucleoprotein (NP), are considered viable targets for diagnostic assays. A previous study identified three aptamers (Apt1. Apt2 and Apt3) with high affinity for EBOV NP using systemic evolution of ligands by exponential enrichment (SELEX). This study aimed to employ in silico methods, such as Phyre2, RNAfold, RNAComposer, HADDOCK and GROMACS, to model the structures of EBOV NP and the aptamers, and to investigate their binding. The in silico analysis revealed successful binding of all the three aptamers to EBOV NP, with a suggested ranking of Apt1 > Apt2 > Apt3 based on binding affinity. Microscale thermophoresis (MST) analysis confirmed the binding, providing dissociation constants of 25 ± 2.84, 56 ± 2.76 and 140 ±3.69 nM for Apt1, Apt2 and Apt3, respectively. The study shows that the findings of the in silico analysis was in agreement with the MST analysis. Inclusion of these in silico approaches in diagnostic assay development can expedite the selection of candidate aptamers, potentially overcoming challenges associated with aptamer application in diagnostics.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- D R Martin
- Department of Science and Innovation/Mintek Nanotechnology Innovation Centre, Biolabels Node, Department of Biotechnology, Faculty of Natural Sciences, University of the Western Cape, Bellville, South Africa
- South African Medical Research Council Bioinformatics Unit, South African National Bioinformatics Institute (SANBI), University of the Western Cape, Bellville, South Africa Cape Town, South Africa
| | - A T Mutombwera
- Department of Biochemistry and Microbiology, Nelson Mandela University, Port Elizabeth, South Africa
| | - A M Madiehe
- Department of Science and Innovation/Mintek Nanotechnology Innovation Centre, Biolabels Node, Department of Biotechnology, Faculty of Natural Sciences, University of the Western Cape, Bellville, South Africa
- Nanobiotechnology Research Group, Department of Biotechnology, Faculty of Natural Sciences, University of the Western Cape, Bellville, South Africa
| | - M O Onani
- Department of Chemistry, Faculty of Natural Sciences, University of the Western Cape, Bellville, South Africa
| | - M Meyer
- Department of Science and Innovation/Mintek Nanotechnology Innovation Centre, Biolabels Node, Department of Biotechnology, Faculty of Natural Sciences, University of the Western Cape, Bellville, South Africa
| | - R Cloete
- South African Medical Research Council Bioinformatics Unit, South African National Bioinformatics Institute (SANBI), University of the Western Cape, Bellville, South Africa Cape Town, South Africa
| |
Collapse
|
2
|
Qin G, Zhao C, Yang J, Wang Z, Ren J, Qu X. Unlocking G-Quadruplexes as Targets and Tools against COVID-19. CHINESE J CHEM 2022; 41:CJOC202200486. [PMID: 36711116 PMCID: PMC9874442 DOI: 10.1002/cjoc.202200486] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/08/2022] [Accepted: 10/10/2022] [Indexed: 02/01/2023]
Abstract
The applicability of G-quadruplexes (G4s) as antiviral targets, therapeutic agents and diagnostic tools for coronavirus disease 2019 (COVID-19) is currently being evaluated, which has drawn the extensive attention of the scientific community. During the COVID-19 pandemic, research in this field is rapidly accumulating. In this review, we summarize the latest achievements and breakthroughs in the use of G4s as antiviral targets, therapeutic agents and diagnostic tools for COVID-19, particularly using G4 ligands. Finally, strength and weakness regarding G4s in anti-SARS-CoV-2 field are highlighted for prospective future projects.
Collapse
Affiliation(s)
- Geng Qin
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource UtilizationChangchun Institute of Applied Chemistry Chinese Academy of ScienceChangchun, Jilin130022China
- University of Science and Technology of ChinaHefeiAnhui230026China
| | - Chuanqi Zhao
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource UtilizationChangchun Institute of Applied Chemistry Chinese Academy of ScienceChangchun, Jilin130022China
- University of Science and Technology of ChinaHefeiAnhui230026China
| | - Jie Yang
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource UtilizationChangchun Institute of Applied Chemistry Chinese Academy of ScienceChangchun, Jilin130022China
- University of Science and Technology of ChinaHefeiAnhui230026China
| | - Zhao Wang
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource UtilizationChangchun Institute of Applied Chemistry Chinese Academy of ScienceChangchun, Jilin130022China
- University of Science and Technology of ChinaHefeiAnhui230026China
| | - Jinsong Ren
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource UtilizationChangchun Institute of Applied Chemistry Chinese Academy of ScienceChangchun, Jilin130022China
- University of Science and Technology of ChinaHefeiAnhui230026China
| | - Xiaogang Qu
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource UtilizationChangchun Institute of Applied Chemistry Chinese Academy of ScienceChangchun, Jilin130022China
- University of Science and Technology of ChinaHefeiAnhui230026China
| |
Collapse
|
3
|
Chen J, Zhao Y, Feng W. Selection and Characterization of DNA Aptamers Targeting hLCN6 Protein for Sperm Capture. Appl Biochem Biotechnol 2022; 194:2565-2580. [PMID: 35171466 DOI: 10.1007/s12010-022-03834-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/28/2022] [Indexed: 11/25/2022]
Abstract
It is an urgent and difficult task to establish a simple and efficient method for identifying and isolating sperm cells from mixed stains in forensic science. In this project, we developed a DNA aptamer-based system for sperm separation and purification from mixed stain samples by targeting sperm surface proteins. Human lipocalin 6 (hLCN6) is an epididymal secreted protein that binds to the head and tail of sperm cells and associated with sperm maturation. Using systematic evolution of ligands by exponential enrichment (SELEX) technology, aptamers that bind with high affinity and specificity to hLCN6 were screened from a random single-stranded DNA (ssDNA) library using magnetic bead-bound hLCN6 as target. The enriched library was obtained after 15 SELEX rounds. Of hLCN6-binding aptamer variants, 19 were further classified into one of the four groups based on their N60 random sequence regions, wherein one representative from each group was characterized. Prediction analysis of the secondary structure suggested discrete features with typical loop and stem motifs. Binding capability of selected aptamers was investigated by quantitative PCR, and aptamer H2 was found to be the most specific aptamer to sperm cells. The dissociation constant (Kd) of H2 aptamer was calculated as 3.21 ± 0.75 nM. Furthermore, H2 aptamer-coupled magnetic beads can recognize and capture sperm cells, which establishes the foundation of an approach for rapidly isolating sperm cells from mixed stains based on nucleic acid-protein interaction.
Collapse
Affiliation(s)
- Jiong Chen
- Department of Forensic Biology, Henan University of Science and Technology, Kaiyuan Street 263, Luoyang, 471023, China.
| | - Yue Zhao
- CITIC Heavy Industries Co., Ltd, Luoyang, 471003, China
| | - Wei Feng
- Department of Forensic Biology, Henan University of Science and Technology, Kaiyuan Street 263, Luoyang, 471023, China
| |
Collapse
|
4
|
Gao H, Peng S, Yan C, Zhang Q, Zheng X, Yang T, Wang D, Zhou X, Shao Y. Stimuli-Responsive and Reversible Nanoassemblies of G-Triplexes. Chembiochem 2021; 23:e202100587. [PMID: 34796597 DOI: 10.1002/cbic.202100587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Indexed: 11/06/2022]
Abstract
G-triplex (G3) structures formed with three consecutive G-tracts have recently been identified as a new emerging guanine-rich DNA fold. There could likely be a wide range of biological functions for G3s as occurring for G-quadruplex (G4) structures formed with four consecutive G-tracts. However, in comparison to the many reports on G4 nanoassemblies that organize monomers together in a controllable manner, G3-favored nanoassemblies have yet to be explored. In this work, we found that a natural alkaloid of sanguinarine can serve as a dynamic ligand glue to reversibly switch the dimeric nanoassemblies of the thrombin binding aptamer G3 (TBA-G3). The glue planarity was considered to be a crucial factor for realizing this switching. More importantly, external stimuli including pH, sulfite, O2 and H2 O2 can be employed as common regulators to easily modulate the glue's adhesivity for constructing and destructing the G3 nanoassemblies as a result of the ligand converting between isoforms. However, this assembly behavior does not occur with the counterpart TBA-G4. Our work demonstrates that higher-order G3 nanoassemblies can be reversibly operated by manipulating ligand adhesivity. This provides an alternative understanding of the unique behavior of guanine-rich sequences and focuses attention on the G3 fold since the nanoassembly event investigated herein might occur in living cells.
Collapse
Affiliation(s)
- Heng Gao
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Institute of Physical Chemistry, College of Chemistry and Life Sciences, Zhejiang Normal University, Zhejiang, Jinhua, 321004, P. R. China
| | - Shuzhen Peng
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Institute of Physical Chemistry, College of Chemistry and Life Sciences, Zhejiang Normal University, Zhejiang, Jinhua, 321004, P. R. China
| | - Chenxiao Yan
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Institute of Physical Chemistry, College of Chemistry and Life Sciences, Zhejiang Normal University, Zhejiang, Jinhua, 321004, P. R. China
| | - Qingqing Zhang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Institute of Physical Chemistry, College of Chemistry and Life Sciences, Zhejiang Normal University, Zhejiang, Jinhua, 321004, P. R. China
| | - Xiong Zheng
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Institute of Physical Chemistry, College of Chemistry and Life Sciences, Zhejiang Normal University, Zhejiang, Jinhua, 321004, P. R. China
| | - Tong Yang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Institute of Physical Chemistry, College of Chemistry and Life Sciences, Zhejiang Normal University, Zhejiang, Jinhua, 321004, P. R. China
| | - Dandan Wang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Institute of Physical Chemistry, College of Chemistry and Life Sciences, Zhejiang Normal University, Zhejiang, Jinhua, 321004, P. R. China
| | - Xiaoshun Zhou
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Institute of Physical Chemistry, College of Chemistry and Life Sciences, Zhejiang Normal University, Zhejiang, Jinhua, 321004, P. R. China
| | - Yong Shao
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Institute of Physical Chemistry, College of Chemistry and Life Sciences, Zhejiang Normal University, Zhejiang, Jinhua, 321004, P. R. China
| |
Collapse
|
5
|
Tekin A. Towards the crystal structure of thymine: An intermolecular force field development and parallel global cluster optimizations. J Chem Phys 2019; 151:244302. [DOI: 10.1063/1.5131754] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Affiliation(s)
- Adem Tekin
- Informatics Institute, Istanbul Technical University, 34469 Maslak, Istanbul, Turkey
- Research Institute for Fundamental Sciences (TÜBİTAK-TBAE), 41470 Gebze, Kocaeli, Turkey
| |
Collapse
|
6
|
Rose KM, Alves Ferreira-Bravo I, Li M, Craigie R, Ditzler MA, Holliger P, DeStefano JJ. Selection of 2'-Deoxy-2'-Fluoroarabino Nucleic Acid (FANA) Aptamers That Bind HIV-1 Integrase with Picomolar Affinity. ACS Chem Biol 2019; 14:2166-2175. [PMID: 31560515 PMCID: PMC7005942 DOI: 10.1021/acschembio.9b00237] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
![]()
Systematic Evolution
of Ligands by Exponential Enrichment (SELEX)
is the iterative process by which nucleic acids that can bind with
high affinity and specificity (termed aptamers) to specific protein
targets are selected. Using a SELEX protocol adapted for Xeno-Nucleic
Acid (XNA) as a suitable substrate for aptamer generation, 2′-fluoroarabinonucleic
acid (FANA) was used to select several related aptamers to HIV-1 integrase
(IN). IN bound FANA aptamers with equilibrium dissociation constants
(KD,app) of ∼50–100 pM in
a buffer with 200 mM NaCl and 6 mM MgCl2. Comparisons to
published HIV-1 IN RNA and DNA aptamers as well as IN genomic binding
partners indicated that FANA aptamers bound more than 2 orders of
magnitude more tightly to IN. Using a combination of RNA folding algorithms
and covariation analysis, all strong binding aptamers demonstrated
a common four-way junction structure, despite significant sequence
variation. IN aptamers were selected from the same starting library
as FA1, a FANA aptamer that binds with pM affinity to HIV-1 Reverse
Transcriptase (RT). It contains a 20-nucleotide 5′ DNA sequence
followed by 59 FANA nucleotides. IN-1.1 (one of the selected aptamers)
potently inhibited IN activity and intasome formation in vitro. Replacing
the FANA nucleotides of IN-1.1 with 2′-fluororibonucleic acid
(F-RNA), which has the same chemical formula but with a ribose rather
than arabinose sugar conformation, dramatically reduced binding, suggesting
that FANA adopts unique structural conformations that promote binding
to HIV-1 IN.
Collapse
|
7
|
Umar MI, Ji D, Chan CY, Kwok CK. G-Quadruplex-Based Fluorescent Turn-On Ligands and Aptamers: From Development to Applications. Molecules 2019; 24:E2416. [PMID: 31262059 PMCID: PMC6650947 DOI: 10.3390/molecules24132416] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Revised: 06/17/2019] [Accepted: 06/24/2019] [Indexed: 02/08/2023] Open
Abstract
Guanine (G)-quadruplexes (G4s) are unique nucleic acid structures that are formed by stacked G-tetrads in G-rich DNA or RNA sequences. G4s have been reported to play significant roles in various cellular events in both macro- and micro-organisms. The identification and characterization of G4s can help to understand their different biological roles and potential applications in diagnosis and therapy. In addition to biophysical and biochemical methods to interrogate G4 formation, G4 fluorescent turn-on ligands can be used to target and visualize G4 formation both in vitro and in cells. Here, we review several representative classes of G4 fluorescent turn-on ligands in terms of their interaction mechanism and application perspectives. Interestingly, G4 structures are commonly identified in DNA and RNA aptamers against targets that include proteins and small molecules, which can be utilized as G4 tools for diverse applications. We therefore also summarize the recent development of G4-containing aptamers and highlight their applications in biosensing, bioimaging, and therapy. Moreover, we discuss the current challenges and future perspectives of G4 fluorescent turn-on ligands and G4-containing aptamers.
Collapse
Affiliation(s)
- Mubarak I Umar
- Department of Chemistry, City University of Hong Kong, Kowloon Tong, Hong Kong SAR, China
| | - Danyang Ji
- Department of Chemistry, City University of Hong Kong, Kowloon Tong, Hong Kong SAR, China
| | - Chun-Yin Chan
- Department of Chemistry, City University of Hong Kong, Kowloon Tong, Hong Kong SAR, China
| | - Chun Kit Kwok
- Department of Chemistry, City University of Hong Kong, Kowloon Tong, Hong Kong SAR, China.
| |
Collapse
|
8
|
Cai S, Yan J, Xiong H, Liu Y, Peng D, Liu Z. Investigations on the interface of nucleic acid aptamers and binding targets. Analyst 2019; 143:5317-5338. [PMID: 30357118 DOI: 10.1039/c8an01467a] [Citation(s) in RCA: 168] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Nucleic acid aptamers are single-stranded DNA or RNA of 20-100 nucleotides in length that have attracted substantial scientific interest due to their ability to specifically bind to target molecules via the formation of three-dimensional structures. Compared to traditional protein antibodies, aptamers have several advantages, such as their small size, high binding affinity, specificity, flexible structure, being chemical synthesizable and modifiable, good biocompatibility, high stability and low immunogenicity, which all contribute to their widely applications in the biomedical field. To date, much progress has been made in the study and applications of aptamers, however, detailed information on how aptamers bind to their targets is still scarce. Over the past few decades, many methods have been introduced to investigate the aptamer-target binding process, such as measuring the main kinetic or thermodynamic parameters, detecting the structural changes of the binding complexes, etc. Apart from traditional physicochemical methods, various types of molecular docking programs have been applied to simulate the aptamer-target interactions, while these simulations also have limitations. To facilitate the further research on the interactions, herein, we provide a brief review to illustrate the recent advances in the study of aptamer-target interactions. We summarize the binding targets of aptamers, such as small molecules, macromolecules, and even cells. Their binding constants (KD) are also summarized. Methods to probe the aptamer-target binding process, such as surface plasmon resonance (SPR), circular dichroism spectroscopy (CD), isothermal titration calorimetry (ITC), footprinting assay, truncation and mutation assay, nuclear magnetic resonance spectroscopy (NMR), X-ray crystallography and molecular docking simulation are indicated. The binding forces mediating the aptamer-target interactions, such as hydrogen bonding, electrostatic interaction, the hydrophobic effect, π-π stacking and van der Waals forces are summarized. The challenges and future perspectives are also discussed.
Collapse
Affiliation(s)
- Shundong Cai
- Department of Pharmaceutics, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, PR China.
| | | | | | | | | | | |
Collapse
|
9
|
Li P, Yu Q, Zhou L, Dong D, Wei S, Ya H, Chen B, Qin Q. Probing and characterizing the high specific sequences of ssDNA aptamer against SGIV-infected cells. Virus Res 2018; 246:46-54. [PMID: 29341876 DOI: 10.1016/j.virusres.2018.01.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2017] [Revised: 12/07/2017] [Accepted: 01/12/2018] [Indexed: 12/15/2022]
Abstract
As the major viral pathogen of grouper aquaculture, Singapore grouper iridovirus (SGIV) has caused great economic losses in China and Southeast Asia. In the previous study, we have generated highly specific ssDNA aptamers against SGIV-infected grouper spleen cells (GS) by Systematic Evolution of Ligands by Exponential Enrichment technology (SELEX), in which Q2 had the highest binding affinity of 16.43 nM. In this study, we would try to identify the specific sequences in the aptamer Q2 that exhibited the high binding affinity to SGIV-infected cells by truncating the original Q2 into some different specific segments. We first evaluated the specificity and binding affinity of these truncated aptamers to SGIV-infected cells by flow cytometry, fluorescent imaging of cells and aptamer-based enzyme-linked apta-sorbent assay (ELASA). We then performed cytotoxicity analysis, assessment of the inhibitory effects upon SGIV infection and the celluar internalization kinetics of each truncated aptamer. Compared to the initial Q2, one of the truncated aptamer Q2-C5 showed a 3-fold increase in the binding affinity for SGIV-infected cells, and held more effective inhibitory effects, higher internalization kinetics and stability. Hence, the aptamer's truncated methods could be applied in the research of identifying aptamer's key sequences. The shorter, structure optimizing aptamer showed more excellent performance over the originally selected aptamer, which could potentially be applied in developing commercial detection probes for the early and rapid diagnosis of SGIV infection, and highly specific therapeutic drugs against SGIV infection.
Collapse
Affiliation(s)
- Pengfei Li
- Guangxi Key Laboratory of Marine Environmental Science, Guangxi Academy of Sciences, Nanning 530007, China
| | - Qing Yu
- Guangxi Key Laboratory of Marine Environmental Science, Guangxi Academy of Sciences, Nanning 530007, China
| | - Lingli Zhou
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha 410081, China
| | - Dexin Dong
- Guangxi Key Laboratory of Marine Environmental Science, Guangxi Academy of Sciences, Nanning 530007, China
| | - Shina Wei
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Hanzheng Ya
- Guangxi Key Laboratory of Marine Environmental Science, Guangxi Academy of Sciences, Nanning 530007, China
| | - Bo Chen
- Guangxi Key Laboratory of Marine Environmental Science, Guangxi Academy of Sciences, Nanning 530007, China
| | - Qiwei Qin
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
10
|
Russo Krauss I, Napolitano V, Petraccone L, Troisi R, Spiridonova V, Mattia CA, Sica F. Duplex/quadruplex oligonucleotides: Role of the duplex domain in the stabilization of a new generation of highly effective anti-thrombin aptamers. Int J Biol Macromol 2017; 107:1697-1705. [PMID: 29024684 DOI: 10.1016/j.ijbiomac.2017.10.033] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2017] [Revised: 10/05/2017] [Accepted: 10/06/2017] [Indexed: 12/19/2022]
Abstract
Recently, mixed duplex/quadruplex oligonucleotides have attracted great interest for use as biomedical aptamers. In the case of anti-thrombin aptamers, the addition of duplex-forming sequences to a G-quadruplex module identical or very similar to the best-known G-quadruplex of the Thrombin Binding Aptamer (HD1) results in new or improved biological properties, such as higher activity or different recognition properties with respect to HD1. Remarkably, this bimodular fold was hypothesized, based on its sequence, for the only anti-thrombin aptamer in advanced clinical trial, NU172. Whereas cation modulation of G-quadruplex conformation and stability is well characterized, only few data from similar analysis on duplex/quadruplex oligonucleotides exist. Here we have performed a characterization of structure and stability of four different duplex/quadruplex anti-thrombin aptamers, including NU172, in the presence of different cations and in physiological-mimicking conditions in comparison to HD1, by means of spectroscopic techniques (UV and circular dichroism) and differential scanning calorimetry. Our data show a strong reciprocal influence of each domain on the stability of the other and in particular suggest a stabilizing effect of the duplex region in the presence of solutions mimicking the physiological conditions, strengthening the idea that bimodular aptamers present better therapeutic potentialities than those containing a single G-quadruplex domain.
Collapse
Affiliation(s)
- Irene Russo Krauss
- Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario di Monte Sant'Angelo, Via Cintia, I-80126, Naples, Italy; CSGI - Consorzio Interuniversitario per lo Sviluppo dei Sistemi a Grande Interfase, Via della Lastruccia 3, I-50019, Sesto Fiorentino, FI, Italy
| | - Valeria Napolitano
- Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario di Monte Sant'Angelo, Via Cintia, I-80126, Naples, Italy
| | - Luigi Petraccone
- Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario di Monte Sant'Angelo, Via Cintia, I-80126, Naples, Italy
| | - Romualdo Troisi
- Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario di Monte Sant'Angelo, Via Cintia, I-80126, Naples, Italy
| | - Vera Spiridonova
- A.N. Belozersky Institute of Physico-Chemical Biology, M.V. Lomonosov Moscow State University, 119992 Moscow, Russia
| | - Carlo Andrea Mattia
- Department of Pharmacy, University of Salerno, Via Ponte Don Melillo, I-84084, Fisciano, SA, Italy
| | - Filomena Sica
- Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario di Monte Sant'Angelo, Via Cintia, I-80126, Naples, Italy.
| |
Collapse
|
11
|
D'Urso A, Randazzo R, Rizzo V, Gangemi CMA, Romanucci V, Zarrelli A, Tomaselli G, Milardi D, Borbone N, Purrello R, Piccialli G, Di Fabio G, Oliviero G. Stabilization vs. destabilization of G-quadruplex superstructures: the role of the porphyrin derivative having spermine arms. Phys Chem Chem Phys 2017. [PMID: 28650039 DOI: 10.1039/c7cp02816d] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The interaction of the porphyrin derivative H2TCPPSpm4, having spermine pendants in the four meso positions, with the G-quadruplex (GQ) structure formed by the DNA aptamer TGGGAG has been investigated by means of UV, electronic circular dichroism and PAGE studies. The results reported here demonstrate that the porphyrin derivative is capable of stabilizing or destabilizing the higher-ordered structures of parallel GQs, depending on the method used to reach their relative stoichiometry (titration vs. single addition). Noteworthily, when two equivalents of H2TCPPSpm4 were mixed directly with one equivalent of the (TGGGAG)4 GQ to reach a 2 : 1 H2TCPPSpm4 : GQ ratio T1/2 higher than 80 °C was also observed confirming the presence of higher-ordered GQ structures.
Collapse
Affiliation(s)
- A D'Urso
- Department of Chemical Science, University of Catania, V.le A Doria 6, 95125, Catania, Italy.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Li P, Zhou L, Wei J, Yu Y, Yang M, Wei S, Qin Q. Development and characterization of aptamer-based enzyme-linked apta-sorbent assay for the detection of Singapore grouper iridovirus infection. J Appl Microbiol 2016; 121:634-43. [PMID: 27124762 DOI: 10.1111/jam.13161] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Revised: 01/31/2016] [Accepted: 02/21/2016] [Indexed: 01/18/2023]
Abstract
AIMS Singapore grouper iridovirus (SGIV) is a devastating aquaculture virus responsible for heavy economic losses to grouper, Epinephelus sp. aquaculture. The aim of this study was to develop a rapid and sensitive detection method for SGIV infections in infected groupers. METHODS AND RESULTS We previously generated DNA aptamers against SGIV-infected cells. In this study, we established and characterized a novel aptamer (Q3)-based enzyme-linked apta-sorbent assay (ELASA) for the detection of SGIV infection in Epinephelus coioides. The Q3-based ELASA could detect SGIV infection rapidly in vitro and in vivo, with high specificity and stability. Q3-based ELASA specifically recognized SGIV-infected cells, but not other-virus-infected cells or uninfected cells. Q3-based ELASA detected SGIV infection in a dose-dependent manner at Q3 concentrations as low as 125 nmol l(-1) . The results in relation to SGIV-infected cells (5 × 10(4) ), incubation time (1 min) and incubation temperature (37°C) demonstrated that Q3-based ELASA could detect SGIV infection quickly and stably, superior to antibody-based enzyme-linked immunosorbent assay. Q3-based ELASA could detect the presence of SGIV infection in kidney, liver and spleen samples in vivo, at dilutions of 1/50, 1/100 and 1/50 respectively. The complete detection process took 1-2 h. CONCLUSIONS Q3-based ELASA could be a useful tool for diagnosing SGIV infection. SIGNIFICANCE AND IMPACT OF THE STUDY This is the first developed aptamer-based ELASA for detecting SGIV infection, and is widely applicable in grouper aquaculture industry in light of its rapidity, and high specificity and stability.
Collapse
Affiliation(s)
- P Li
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China.,University of Chinese Academy of Sciences, Beijing, China
| | - L Zhou
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China.,University of Chinese Academy of Sciences, Beijing, China
| | - J Wei
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
| | - Y Yu
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China.,University of Chinese Academy of Sciences, Beijing, China
| | - M Yang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
| | - S Wei
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
| | - Q Qin
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China.,College of Marine Sciences, South China Agricultural University, Guangzhou, China
| |
Collapse
|
13
|
Mozioglu E, Gokmen O, Tamerler C, Kocagoz ZT, Akgoz M. Selection of Nucleic Acid Aptamers Specific for Mycobacterium tuberculosis. Appl Biochem Biotechnol 2015; 178:849-64. [PMID: 26541162 DOI: 10.1007/s12010-015-1913-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Accepted: 10/26/2015] [Indexed: 12/14/2022]
Abstract
Tuberculosis (TB) remains to be a major global health problem, with about 9 million new cases and 1.4 million deaths in 2011. For the control of tuberculosis as well as other infectious diseases, WHO recommended "ASSURED" (Affordable, Sensitive, Specific, User-friendly, Rapid and robust, Equipment-free, and Deliverable to the end user) diagnostic tools that can easily be maintained and used in developing countries. Aptamers are promising tools for developing point-of-care diagnostic assays for TB. In this study, ssDNA aptamers that recognize Mycobacterium tuberculosis H37Ra were selected by systematic evolution of ligands by exponential enrichment (SELEX). For this purpose, two different selection protocols, ultrafiltration and centrifugation, were applied. A total of 21 TB specific aptamers were selected. These aptamers exhibited "G-rich" regions on the 3' terminus of the aptamers, including a motif of "TGGGG," "GTGG," or "CTGG." Binding capability of selected aptamers were investigated by quantitative PCR and Mtb36 DNA aptamer was found the most specific aptamer to M. tuberculosis H37Ra. The dissociation constant (K d) of Mtb36 aptamer was calculated as 5.09 ± 1.43 nM in 95% confidence interval. Relative binding ratio of Mtb36 aptamer to M. tuberculosis H37Ra over Mycobacterium bovis and Escherichia coli was also determined about 4 times and 70 times more, respectively. Mtb36 aptamer is highly selective for M. tuberculosis, and it can be used in an aptamer-based biosensor for the detection of M. tuberculosis.
Collapse
Affiliation(s)
- Erkan Mozioglu
- Molecular Biology-Biotechnology & Genetics Research Center, Istanbul Technical University, Istanbul, Turkey. .,Bioanalysis Laboratory, TÜBİTAK UME (National Metrology Institute), Kocaeli, Turkey.
| | - Ozgur Gokmen
- Chemistry Department, Gebze Institute of Technology, Kocaeli, Turkey.
| | - Candan Tamerler
- Molecular Biology-Biotechnology & Genetics Research Center, Istanbul Technical University, Istanbul, Turkey. .,Mechanical Engineering and Bioengineering Research Center, University of Kansas, Lawrence, KS, USA.
| | - Zuhtu Tanil Kocagoz
- Department of Microbiology and Clinical Microbiology, Acıbadem University, Istanbul, Turkey. .,Trends in Innovative Biotechnology Organization, Istanbul, Turkey.
| | - Muslum Akgoz
- Bioanalysis Laboratory, TÜBİTAK UME (National Metrology Institute), Kocaeli, Turkey.
| |
Collapse
|
14
|
Li P, Zhou L, Yu Y, Yang M, Ni S, Wei S, Qin Q. Characterization of DNA aptamers generated against the soft-shelled turtle iridovirus with antiviral effects. BMC Vet Res 2015; 11:245. [PMID: 26419355 PMCID: PMC4588899 DOI: 10.1186/s12917-015-0559-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Accepted: 09/22/2015] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND Soft-shelled turtle iridovirus (STIV) causes severe systemic disease in farmed soft-shelled turtles (Trionyx sinensis). More efficient methods of controlling and detecting STIV infections are urgently needed. METHODS In this study, we generated eight single-stranded DNA (ssDNA) aptamers against STIV using systematic evolution of ligands by exponential enrichment (SELEX). RESULTS The aptamers formed representative stem-loop secondary structures. Electrophoretic mobility shift assays and fluorescent localization showed that the selected aptamers had high binding affinity for STIV. Aptamer QA-36 had the highest calculated binding affinity (K d ) of 53.8 nM. Flow cytometry and fluorescence microscopy of cell-aptamer interactions demonstrated that QA-12 was able to recognize both STIV-infected cells and tissues with a high level of specificity. Moreover, the selected aptamers inhibited STIV infection in vitro and in vivo, with aptamer QA-36 demonstrating the greatest protective effect against STIV and inhibiting STIV infection in a dose-dependent manner. DISCUSSION We generated DNA aptamers that bound STIV with a high level of specificity, providing an alternative means for investigating STIV pathogenesis, drug development, and medical therapies for STIV infection. CONCLUSIONS These DNA aptamers may thus be suitable antiviral candidates for the control of STIV infections.
Collapse
Affiliation(s)
- Pengfei Li
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou, 510301, China.,University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing, 100049, China
| | - Lingli Zhou
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou, 510301, China.,University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing, 100049, China
| | - Yepin Yu
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou, 510301, China.,University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing, 100049, China
| | - Min Yang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou, 510301, China
| | - Songwei Ni
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou, 510301, China.,University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing, 100049, China
| | - Shina Wei
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou, 510301, China.
| | - Qiwei Qin
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou, 510301, China. .,University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing, 100049, China.
| |
Collapse
|
15
|
Li P, Wei S, Zhou L, Yang M, Yu Y, Wei J, Jiang G, Qin Q. Selection and characterization of novel DNA aptamers specifically recognized by Singapore grouper iridovirus-infected fish cells. J Gen Virol 2015; 96:3348-3359. [PMID: 26310792 DOI: 10.1099/jgv.0.000270] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Singapore grouper iridovirus (SGIV) is a major viral pathogen of grouper aquaculture, and has caused heavy economic losses in China and South-east Asia. In this study, we generated four ssDNA aptamers against SGIV-infected grouper spleen (GS) cells using SELEX (systematic evolution of ligands by exponential enrichment) technology. Four aptamers exhibited high affinity to SGIV-infected GS cells, in particular the Q2 aptamer. Q2 had a binding affinity of 12.09 nM, the highest of the four aptamers. These aptamers also recognized SGIV-infected tissues with high levels of specificity. Protease treatment and flow cytometry analysis of SGIV-infected cells revealed that the target molecules of the Q3, Q4 and Q5 aptamers were trypsin-sensitive proteins, whilst the target molecules of Q2 might be membrane lipids or surface proteins that were not trypsin-sensitive. The generated aptamers appeared to inhibit SGIV infection in vitro. Aptamer Q2 conferred the highest levels of protection against SGIV and was able to inhibit SGIV infection in a dose-dependent manner. In addition, Q2 was efficiently internalized by SGIV-infected GS cells and localized at the viral assembly sites. Our results demonstrated that the four novel aptamers we generated were specific for SGIV-infected cells and could potentially be applied as rapid molecular diagnostic test reagents or therapeutic drugs targeting SGIV.
Collapse
Affiliation(s)
- Pengfei Li
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, PR China.,University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing 100049, PR China
| | - Shina Wei
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, PR China
| | - Lingli Zhou
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, PR China.,University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing 100049, PR China
| | - Min Yang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, PR China
| | - Yepin Yu
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, PR China.,University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing 100049, PR China
| | - Jingguang Wei
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, PR China
| | - Guohua Jiang
- Analytical and Testing Center, Beijing Normal University, Xinjiekouwai Street, Beijing 100875, PR China
| | - Qiwei Qin
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, PR China.,University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing 100049, PR China
| |
Collapse
|
16
|
Takahashi M, Burnett JC, Rossi JJ. Aptamer–siRNA Chimeras for HIV. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2015; 848:211-34. [DOI: 10.1007/978-1-4939-2432-5_11] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
17
|
The use of hairpin DNA duplexes as HIV-1 fusion inhibitors: synthesis, characterization, and activity evaluation. Eur J Med Chem 2014; 82:341-6. [PMID: 24927054 DOI: 10.1016/j.ejmech.2014.05.068] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Revised: 04/26/2014] [Accepted: 05/28/2014] [Indexed: 12/21/2022]
Abstract
Discovery of new drugs for the treatment of AIDS that possess unique structures associated with novel mechanisms of action are of great importance due the rapidity with which drug-resistant HIV-1 strains evolve. Recently we reported on a novel class of DNA duplex-based HIV-1 fusion inhibitors modified with hydrophobic groups. The present study describes a new category of hairpin fusion inhibitor DNA duplexes bearing a 3 nucleotide loop located at either the hydrophobic or hydrophilic end. The new loop structures were designed to link 2 separate duplex-forming oligodeoxynucleotides (ODNs) to make helix-assembly easier and more thermally stable resulting in a more compact form of DNA duplex based HIV-1 fusion inhibitors. A series of new hairpin duplexes were tested for anti-HIV-1 cell-cell membrane fusion activity. In addition, Tm, CD, fluorescent resonance energy transfer assays, and molecular modeling analyses were carried out to define their structural activity relationships and possible mechanisms of action.
Collapse
|
18
|
Romanucci V, Milardi D, Campagna T, Gaglione M, Messere A, D'Urso A, Crisafi E, La Rosa C, Zarrelli A, Balzarini J, Di Fabio G. Synthesis, biophysical characterization and anti-HIV activity of d(TG3AG) Quadruplexes bearing hydrophobic tails at the 5'-end. Bioorg Med Chem 2014; 22:960-6. [PMID: 24433967 DOI: 10.1016/j.bmc.2013.12.051] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2013] [Revised: 12/17/2013] [Accepted: 12/21/2013] [Indexed: 01/24/2023]
Abstract
Novel conjugated G-quadruplex-forming d(TG3AG) oligonucleotides, linked to hydrophobic groups through phosphodiester bonds at 5'-end, have been synthesized as potential anti-HIV aptamers, via a fully automated, online phosphoramidite-based solid-phase strategy. Conjugated quadruplexes showed pronounced anti-HIV activity with some preference for HIV-1, with inhibitory activity invariably in the low micromolar range. The CD and DSC monitored thermal denaturation studies on the resulting quadruplexes, indicated the insertion of lipophilic residue at the 5'-end, conferring always improved stability to the quadruplex complex (20<ΔTm<40°C). The data suggest no direct functional relationship between the thermal stability and anti-HIV activity of the folded conjugated G-quartets. It would appear that the nature of the residue at 5' end of the d(TG3AG) quadruplexes plays an important role in the thermodynamic stabilization but a minor influence on the anti-HIV activity. Moreover, a detailed CD and DSC analyses indicate a monophasic behaviour for sequences I and V, while for ODNs (II-IV) clearly show that these quadruplex structures deviate from simple two-state melting, supporting the hypothesis that intermediate states along the dissociation pathway may exist.
Collapse
Affiliation(s)
- Valeria Romanucci
- Department of Chemical Sciences, University of Napoli 'Federico II', Via Cintia 4, I-80126 Napoli, Italy
| | - Danilo Milardi
- Istituto di Biostrutture e Bioimmagini-Catania, Consiglio Nazionale delle Ricerche, Viale Andrea Doria 6, 95125 Catania, Italy
| | - Tiziana Campagna
- Istituto di Biostrutture e Bioimmagini-Catania, Consiglio Nazionale delle Ricerche, Viale Andrea Doria 6, 95125 Catania, Italy
| | - Maria Gaglione
- Dipartimento di Scienze e Tecnologie Ambientali, Biologiche e Farmaceutiche, Seconda Università̀ di Napoli, Via Vivaldi 43, 81100 Caserta, Italy
| | - Anna Messere
- Dipartimento di Scienze e Tecnologie Ambientali, Biologiche e Farmaceutiche, Seconda Università̀ di Napoli, Via Vivaldi 43, 81100 Caserta, Italy
| | - Alessandro D'Urso
- Dipartimento di Scienze Chimiche, Università degli Studi di Catania, Viale Andrea Doria 6, 95125 Catania, Italy
| | - Emanuela Crisafi
- Dipartimento di Scienze Chimiche, Università degli Studi di Catania, Viale Andrea Doria 6, 95125 Catania, Italy
| | - Carmelo La Rosa
- Dipartimento di Scienze Chimiche, Università degli Studi di Catania, Viale Andrea Doria 6, 95125 Catania, Italy
| | - Armando Zarrelli
- Department of Chemical Sciences, University of Napoli 'Federico II', Via Cintia 4, I-80126 Napoli, Italy
| | - Jan Balzarini
- Rega Institute for Medical Research, KU Leuven, Minderbroedersstraat 10, B-3000 Leuven, Belgium
| | - Giovanni Di Fabio
- Department of Chemical Sciences, University of Napoli 'Federico II', Via Cintia 4, I-80126 Napoli, Italy.
| |
Collapse
|
19
|
Aptamer-based therapeutics: new approaches to combat human viral diseases. Pharmaceuticals (Basel) 2013; 6:1507-42. [PMID: 24287493 PMCID: PMC3873675 DOI: 10.3390/ph6121507] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2013] [Revised: 11/12/2013] [Accepted: 11/15/2013] [Indexed: 12/18/2022] Open
Abstract
Viruses replicate inside the cells of an organism and continuously evolve to contend with an ever-changing environment. Many life-threatening diseases, such as AIDS, SARS, hepatitis and some cancers, are caused by viruses. Because viruses have small genome sizes and high mutability, there is currently a lack of and an urgent need for effective treatment for many viral pathogens. One approach that has recently received much attention is aptamer-based therapeutics. Aptamer technology has high target specificity and versatility, i.e., any viral proteins could potentially be targeted. Consequently, new aptamer-based therapeutics have the potential to lead a revolution in the development of anti-infective drugs. Additionally, aptamers can potentially bind any targets and any pathogen that is theoretically amenable to rapid targeting, making aptamers invaluable tools for treating a wide range of diseases. This review will provide a broad, comprehensive overview of viral therapies that use aptamers. The aptamer selection process will be described, followed by an explanation of the potential for treating virus infection by aptamers. Recent progress and prospective use of aptamers against a large variety of human viruses, such as HIV-1, HCV, HBV, SCoV, Rabies virus, HPV, HSV and influenza virus, with particular focus on clinical development of aptamers will also be described. Finally, we will discuss the challenges of advancing antiviral aptamer therapeutics and prospects for future success.
Collapse
|
20
|
Russo Krauss I, Pica A, Merlino A, Mazzarella L, Sica F. Duplex-quadruplex motifs in a peculiar structural organization cooperatively contribute to thrombin binding of a DNA aptamer. ACTA CRYSTALLOGRAPHICA SECTION D: BIOLOGICAL CRYSTALLOGRAPHY 2013; 69:2403-11. [PMID: 24311581 DOI: 10.1107/s0907444913022269] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 06/24/2013] [Accepted: 08/08/2013] [Indexed: 11/10/2022]
Abstract
Potent second-generation thrombin aptamers adopt a duplex-quadruplex bimodular folding and recognize thrombin exosite II with very high affinity and specificity. A sound model of these oligonucleotides, either free or in complex with thrombin, is not yet available. Here, a structural study of one of these aptamers, HD22-27mer, is presented. The crystal structure of this aptamer in complex with thrombin displays a novel architecture in which the helical stem is enchained to a pseudo-G-quadruplex. The results also underline the role of the residues that join the duplex and quadruplex motifs and control their recruitment in thrombin binding.
Collapse
Affiliation(s)
- Irene Russo Krauss
- Department of Chemical Sciences, University of Naples `Federico II', Complesso Universitario di Monte Sant'Angelo, I-80126 Naples, Italy
| | | | | | | | | |
Collapse
|
21
|
DNA duplexes with hydrophobic modifications inhibit fusion between HIV-1 and cell membranes. Antimicrob Agents Chemother 2013; 57:4963-70. [PMID: 23896466 DOI: 10.1128/aac.00758-13] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Discovery of new drugs for the treatment of AIDS typically possessing unique structures associated with novel mechanisms of action has been of great importance due to the quick drug-resistant mutations of HIV-1 strains. The work presented in this report describes a novel class of DNA duplex-based HIV-1 fusion inhibitors. Hydrophobic groups were introduced into a DNA duplex skeleton either at one end, at both ends, or in the middle. These modified DNA duplexes inhibited fusion between HIV-1 and human cell membranes at micro- or submicromolar concentrations. Respective inhibitors adopted an aptamer pattern instead of a base-pairing interaction pattern. Structure-activity relationship studies of the respective DNA duplexes showed that the rigid and negatively charged DNA skeletons, in addition to the presence of hydrophobic groups, were crucial to the anti-HIV-1 activity of these compounds. A fluorescent resonance energy transfer (FRET)-based inhibitory assay showed that these duplex inhibitors interacted with the primary pocket in the gp41 N-terminal heptad repeat (NHR) instead of interacting with the lipid bilayers.
Collapse
|
22
|
Orava EW, Abdul-Wahid A, Huang EHB, Mallick AI, Gariépy J. Blocking the attachment of cancer cells in vivo with DNA aptamers displaying anti-adhesive properties against the carcinoembryonic antigen. Mol Oncol 2013; 7:799-811. [PMID: 23656757 DOI: 10.1016/j.molonc.2013.03.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2013] [Revised: 03/27/2013] [Accepted: 03/31/2013] [Indexed: 01/28/2023] Open
Abstract
The formation of metastatic foci occurs through a series of cellular events, initiated by the attachment and aggregation of cancer cells leading to the establishment of micrometastases. We report the derivation of synthetic DNA aptamers bearing anti-adhesive properties directed at cancer cells expressing the carcinoembryonic antigen (CEA). Two DNA aptamers targeting the homotypic and heterotypic IgV-like binding domain of CEA were shown to block the cell adhesion properties of CEA, while not recognizing other IgV-like domains of CEACAM family members that share strong sequence and structural homologies. More importantly, the pre-treatment of CEA-expressing tumour cells with these aptamers prior to their intraperitoneal implantation resulted in the prevention of peritoneal tumour foci formation. Taken together, these results highlight the effectiveness of targeting the cell adhesion properties of cancer cells with aptamers in preventing tumour implantation.
Collapse
Affiliation(s)
- Erik W Orava
- Department of Pharmaceutical Sciences, University of Toronto, Toronto, Ontario, Canada
| | | | | | | | | |
Collapse
|
23
|
D'Atri V, Oliviero G, Amato J, Borbone N, D'Errico S, Mayol L, Piccialli V, Haider S, Hoorelbeke B, Balzarini J, Piccialli G. New anti-HIV aptamers based on tetra-end-linked DNA G-quadruplexes: effect of the base sequence on anti-HIV activity. Chem Commun (Camb) 2013; 48:9516-8. [PMID: 22898884 DOI: 10.1039/c2cc34399a] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
This communication reports on the synthesis and biophysical, biological and SAR studies of a small library of new anti-HIV aptamers based on the tetra-end-linked G-quadruplex structure. The new aptamers showed EC(50) values against HIV-1 in the range of 0.04-0.15 μM as well as affinities for the HIV-1 gp120 envelope in the same order of magnitude.
Collapse
Affiliation(s)
- Valentina D'Atri
- Dipartimento di Chimica delle Sostanze Naturali, Università degli Studi di Napoli Federico II, Via D. Montesano 49, I-80131 Napoli, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Virgilio A, Esposito V, Citarella G, Mayol L, Galeone A. Structural investigations on the anti-HIV G-quadruplex-forming oligonucleotide TGGGAG and its analogues: evidence for the presence of an A-tetrad. Chembiochem 2012; 13:2219-24. [PMID: 22945376 DOI: 10.1002/cbic.201200481] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2012] [Indexed: 11/07/2022]
Abstract
Several anti-HIV aptamers adopt DNA quadruplex structures. Among these, "Hotoda's aptamer" (base sequence TGGGAG) was one of the first to be discovered. Although it has been the topic of some recent research, no detailed structural investigations have been reported. Here we report structural investigations on this aptamer and analogues with related sequences, by using UV, CD, and NMR spectroscopy as well as electrophoretic techniques. The addition of a 3'-end thymine has allowed us to obtain a single, investigable quadruplex structure. Data clearly point to the presence of an A-tetrad. Furthermore, the effects of the incorporation of an 8-methyl-2'-deoxyguanosine at the 5'-end of the G-run were investigated.
Collapse
Affiliation(s)
- Antonella Virgilio
- Dipartimento di Chimica delle Sostanze Naturali, Università degli Studi di Napoli Federico II, Via D. Montesano 49, I-80131 Napoli, Italy
| | | | | | | | | |
Collapse
|
25
|
DNA aptamer configuration affects the sensitivity and binding kinetics of thrombin. ACTA CHIMICA SLOVACA 2012. [DOI: 10.2478/v10188-012-0009-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
DNA aptamer configuration affects the sensitivity and binding kinetics of thrombinThrombin is serine protease involved in the coagulation cascade, which converts soluble fibrinogen into insoluble strands of fibrin - a matrix of the blood clot formation. Development of the sensitive method of the thrombin detection in nanomolar level is important for clinical practice. In this work we applied acoustic thickness shear mode method (TSM) for study the binding of human thrombin depending on DNA aptamer configuration. We compared sensitivity of detection and binding kinetics of the thrombin to the conventional DNA aptamers and aptamer dimers immobilized at the surface of quartz crystal transducer. We have shown that aptasensors based on aptamer dimers more sensitively detect thrombin. The aptamer-thrombin complexes were also more stable as revealed from equilibrium dissociation constant,KD, that was 4 times lower for aptamer dimers in comparison with conventional aptamers. Determination of motional resistance,Rm, from acoustic impedance analysis allowed us to find important differences in physico-chemical properties of layers formed by conventional aptamers and aptamer dimers.
Collapse
|
26
|
Ai J, Guo W, Li B, Li T, Li D, Wang E. DNA G-quadruplex-templated formation of the fluorescent silver nanocluster and its application to bioimaging. Talanta 2012; 88:450-5. [PMID: 22265525 DOI: 10.1016/j.talanta.2011.10.057] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2011] [Revised: 10/21/2011] [Accepted: 10/26/2011] [Indexed: 10/15/2022]
Abstract
Herein, a novel kind of silver nanocluster is synthesized simply by mixing G-quadruplex template with silver ions and reduction reagent (NaBH(4), here). AS1411 (a G-quadruplex that can bind nucleolin overexpressed in cancer cells) is used as the main model template to prove the synthesis protocol and its potential application. We used fluorescence assay, CD, MALDI TOF MS, and TEM to characterize the silver nanocluster. It is found that after formation of the silver nanocluster, AS1411 still keeps its structure and is able to bind with nucleolin in cancer cell. Meanwhile, this binding behavior can greatly enhance the fluorescence intensity of the silver nanocluster. This property can be directly employed into bioimaging HeLa cells. The cell toxicity (3-[4,5-dimethylthiazolyl-2]-2,5-diphenyltetrazolium bromide, MTT) assay demonstrated that the silver nanocluster has only little affect on the cytotoxicity to the cells, which further proves the applicability of the method in tumor cell imaging. At last, the universality of the synthesis protocol is verified by using a series of other G-quadruplex sequences as templates. For a lot of functional nucleic acids, such as human telomeres and certain aptamers, are with G-rich sequences and can fold into G-quadruplexes in functioning conditions, our method displays a promising application space in future researches.
Collapse
Affiliation(s)
- Jun Ai
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, People's Republic of China
| | | | | | | | | | | |
Collapse
|
27
|
Borbone N, Amato J, Oliviero G, D'Atri V, Gabelica V, De Pauw E, Piccialli G, Mayol L. d(CGGTGGT) forms an octameric parallel G-quadruplex via stacking of unusual G(:C):G(:C):G(:C):G(:C) octads. Nucleic Acids Res 2011; 39:7848-57. [PMID: 21715378 PMCID: PMC3177218 DOI: 10.1093/nar/gkr489] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Among non-canonical DNA secondary structures, G-quadruplexes are currently widely studied because of their probable involvement in many pivotal biological roles, and for their potential use in nanotechnology. The overall quadruplex scaffold can exhibit several morphologies through intramolecular or intermolecular organization of G-rich oligodeoxyribonucleic acid strands. In particular, several G-rich strands can form higher order assemblies by multimerization between several G-quadruplex units. Here, we report on the identification of a novel dimerization pathway. Our Nuclear magnetic resonance, circular dichroism, UV, gel electrophoresis and mass spectrometry studies on the DNA sequence dCGGTGGT demonstrate that this sequence forms an octamer when annealed in presence of K+ or NH4+ ions, through the 5′-5′ stacking of two tetramolecular G-quadruplex subunits via unusual G(:C):G(:C):G(:C):G(:C) octads.
Collapse
Affiliation(s)
- Nicola Borbone
- Dipartimento di Chimica delle Sostanze Naturali, University of Naples Federico II, Naples, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Yang L, Zhu J, Xu Y, Yun W, Zhang R, He P, Fang Y. Electrochemiluminescence Aptamer Biosensor for Detection of Thrombin Based on CdS QDs/ACNTs Electrode. ELECTROANAL 2011. [DOI: 10.1002/elan.201000404] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
29
|
Di Fabio G, D'Onofrio J, Chiapparelli M, Hoorelbeke B, Montesarchio D, Balzarini J, De Napoli L. Discovery of novel anti-HIV active G-quadruplex-forming oligonucleotides. Chem Commun (Camb) 2010; 47:2363-5. [PMID: 21305065 DOI: 10.1039/c0cc04751a] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A series of d((5')TGGGAG(3')) sequences, 5'-conjugated with a variety of aromatic groups through phosphodiester linkages, were synthesized, showing CD spectra diagnostic of parallel-stranded, tetramolecular G-quadruplex structures. When tested for anti-HIV-1 and HIV-2 activity, potent inhibition of HIV-1 infection in CEM cell cultures was found, associated with high selectivity index values. Surface Plasmon Resonance assays revealed specific binding to HIV-1 gp120 and gp41.
Collapse
Affiliation(s)
- Giovanni Di Fabio
- Dipartimento di Chimica Organica e Biochimica, Università degli Studi di Napoli Federico II, Complesso Universitario di Monte S. Angelo, via Cintia, 4, I-80126 Napoli, Italy.
| | | | | | | | | | | | | |
Collapse
|
30
|
Abstract
Aptamers are nucleic acid sequences synthesized through in vitro selection and amplification technique, possessing a broader range of applications in therapeutics, biosensing, diagnostics, and research. Aptamers offer a number of advantages over their antibodies counterpart, one of them is their ability to undergo chemical derivatization to increase their life in the body fluids and bioavailability in animals. Although aptamers were discovered in 1990s, they have become one of the most widely investigated molecules, with a huge number of publications in the last decade. This article presents an overview of the advancements that have been made in aptamers. We mainly focused on articles published since 2005.
Collapse
Affiliation(s)
- Muhammad Ali Syed
- Department of Biosciences, Comsats Institute of Information Technology, Islamabad, Pakistan.
| | | |
Collapse
|
31
|
Rosu F, Gabelica V, Poncelet H, De Pauw E. Tetramolecular G-quadruplex formation pathways studied by electrospray mass spectrometry. Nucleic Acids Res 2010; 38:5217-25. [PMID: 20400500 PMCID: PMC2926595 DOI: 10.1093/nar/gkq208] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Electrospray mass spectrometry was used to investigate the mechanism of tetramolecular G-quadruplex formation by the DNA oligonucleotide dTG5T, in ammonium acetate. The intermediates and products were separated according to their mass (number of strands and inner cations) and quantified. The study of the temporal evolution of each species allows us to propose the following formation mechanism. (i) Monomers, dimers and trimers are present at equilibrium already in the absence of ammonium acetate. (ii) The addition of cations promotes the formation of tetramers and pentamers that incorporate ammonium ions and therefore presumably have stacked guanine quartets in their structure. (iii) The pentamers eventually disappear and tetramers become predominant. However, these tetramers do not have their four strands perfectly aligned to give five G-quartets: the structures contain one ammonium ion too few, and ion mobility spectrometry shows that their conformation is more extended. (iv) At 4°C, the rearrangement of the kinetically trapped tetramers with presumably slipped strand(s) into the perfect G-quadruplex structure is extremely slow (not complete after 4 months). We also show that the addition of methanol to the monomer solution significantly accelerates the cation-induced G-quadruplex assembly.
Collapse
Affiliation(s)
- Frédéric Rosu
- Department of Chemistry B6c, University of Liège, Liège, Belgium.
| | | | | | | |
Collapse
|
32
|
Orava EW, Cicmil N, Gariépy J. Delivering cargoes into cancer cells using DNA aptamers targeting internalized surface portals. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2010; 1798:2190-200. [PMID: 20144587 DOI: 10.1016/j.bbamem.2010.02.004] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2009] [Accepted: 02/03/2010] [Indexed: 11/18/2022]
Abstract
Many evolving treatments for cancer patients are based on the targeted delivery of therapeutic cargoes to and into cancer cells. The advent of monoclonal antibodies and the use of peptide hormones, growth factors and cytokines have historically provided a spectrum of ligands needed to selectively target tumor-associated antigens on cancer cells. However, issues linked to the size, cost and immunogenicity of protein-based ligands have led to the search for alternate ligand families. The advent of short synthetic oligonucleotide ligands known as aptamers now provides a simple strategy to select for membrane-impermeant aptamers tailored to precisely target internalized surface markers present on cancer cells. Here we described how 25-base long, synthetic single-stranded DNA aptamers were derived to bind to known internalized tumor markers such as CD33, CEA, MUC1 and Tn antigens and are imported through these surface portals into cancer cells. The key consequence of using internalized aptamers is their ability to accumulate inside the cells, thus routing their therapeutic cargoes to intracellular sites relevant to their action. Internalized aptamers are discussed in the context of how such ligands have been used to create a range of guided therapeutic agents ranging from drug-based conjugates up to targeted nanoparticles.
Collapse
Affiliation(s)
- Erik W Orava
- Department of Pharmaceutical Sciences, University of Toronto, Toronto, Ontario, Canada
| | | | | |
Collapse
|
33
|
Zhu C, Wen Y, Li D, Wang L, Song S, Fan C, Willner I. Inhibition of the in vitro replication of DNA by an aptamer-protein complex in an autonomous DNA machine. Chemistry 2010; 15:11898-903. [PMID: 19777511 DOI: 10.1002/chem.200901275] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
DNA replication plays a central role in living organisms. Unregulated or uncontrollable DNA replication is well known to result in many pathological states, such as cancer, autoimmune diseases, and viral/bacterial infections. We report that an aptamer-protein complex could indirectly inhibit in vitro replication of DNA. An isothermal DNA machine based on the strand-displacement amplification is employed to support our assumption. An antithrombin aptamer sequence is rationally encoded into the DNA replication template. Once thrombin binds to the template, the as-formed aptamer-protein complexes can, in turn, become a barrier to the polymerase and inhibit the DNA replication activities in both static and dynamic modes. The inhibition is successfully confirmed by both fluorescence and gel-electrophoresis experiments. Considering the availability of a broad library of aptamers and the existence of various DNA/protein interactions, our results imply the possibility for the rational regulation of DNA replication in vivo.
Collapse
Affiliation(s)
- Changfeng Zhu
- Laboratory of Physical Biology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
| | | | | | | | | | | | | |
Collapse
|
34
|
Wang X, Dong P, He P, Fang Y. A solid-state electrochemiluminescence sensing platform for detection of adenosine based on ferrocene-labeled structure-switching signaling aptamer. Anal Chim Acta 2009; 658:128-32. [PMID: 20103085 DOI: 10.1016/j.aca.2009.11.007] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2009] [Revised: 10/27/2009] [Accepted: 11/03/2009] [Indexed: 11/29/2022]
Abstract
A solid-state electrochemiluminescence sensing platform based on ferrocene-labeled structure-switching signaling aptamer (Fc-aptamer) for highly sensitive detection of small molecules is developed successfully using adenosine as a model analyte. Such special sensing platform included two main parts, an electrochemiluminescence (ECL) substrate and an ECL intensity switch. The ECL substrate was made by modifying the complex of Au nanoparticle and Ruthenium (II) tris-(bipyridine) (Ru(bpy)(3)(2+)-AuNPs) onto Au electrode. An anti-adenosine aptamer labeled by ferrocene acted as the ECL intensity switch. A short complementary ssDNA for the aptamer was applied to hybridizing with the aptamer, yielding a double-stranded complex of the aptamer and the ssDNA on the electrode surface. The introduction of adenosine triggered structure switching of the aptamer. As a result, the ssDNA was forced to dissociate from the sensing platform. Such structural change of the aptamer resulted in an obvious ECL intensity decrease due to the increased quenching effect of Fc to the ECL substrate. The analytic results were sensitive and specific.
Collapse
Affiliation(s)
- Xiaoying Wang
- School of Public Health, Southeast University, Nanjing 210009, China
| | | | | | | |
Collapse
|
35
|
Oliviero G, Borbone N, Amato J, D'Errico S, Galeone A, Piccialli G, Varra M, Mayol L. Synthesis of quadruplex-forming tetra-end-linked oligonucleotides: effects of the linker size on quadruplex topology and stability. Biopolymers 2009; 91:466-77. [PMID: 19189376 DOI: 10.1002/bip.21153] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
G-quadruplexes are characteristic structural arrangements of guanine-rich DNA sequences that abound in regions with relevant biological significance. These structures are highly polymorphic differing in the number and polarity of the strands, loop composition, and conformation. Furthermore, the cation species present in solution strongly influence the topology of the G-quadruplexes. Recently, we reported the synthesis and structural studies of new G-quadruplex forming oligodeoxynucleotides (ODNs) in which the 3'- and/or the 5'-ends of four ODN strands are linked together by a non-nucleotidic tetra-end-linker (TEL). These TEL-ODN analogs having the sequence TGGGGT are able to form parallel G-quadruplexes characterized by a remarkable high thermal stability. We report here an investigation about the influence of the reduction of the TEL size on the molecularity, topology, and stability of the resulting TEL-G-quadruplexes using a combination of circular dichroism (CD), CD melting, (1)H NMR spectroscopy, gel electrophoresis, and molecular modeling data. We found that all TEL-(TGGGGT)(4) analogs, regardless the TEL size and the structural orientation of the ODN branches, formed parallel TEL-G-quadruplexes. The molecular modeling studies appear to be consistent with the experimental CD and NMR data revealing that the G-quadruplexes formed by TEL-ODNs having the longer TEL (L1-4) are more stable than the corresponding G-quadruplexes having the shorter TEL (S1-4). The relative stability of S1-4 was also reported. (c) 2009 Wiley Periodicals, Inc. Biopolymers 91: 466-477, 2009.
Collapse
Affiliation(s)
- Giorgia Oliviero
- Dipartimento di Chimica delle Sostanze Naturali, Università degli Studi di Napoli Federico II, Via D. Montesano 49, I-80131 Napoli, Italy
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Amato J, Oliviero G, De Pauw E, Gabelica V. Hybridization of short complementary PNAs to G-quadruplex forming oligonucleotides: An electrospray mass spectrometry study. Biopolymers 2009; 91:244-55. [PMID: 19065573 DOI: 10.1002/bip.21124] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
We investigated the interaction of the short peptide nucleic acid (PNA) strand [acccca]-PNA with oligodeoxynucleotides containing one, two, or four tracts of TGGGGT units. Electrospray ionization mass spectrometry allowed exploring the wide variety of complex stoichiometries that were found to coexist in solution. In water, the PNA strand forms short heteroduplexes with the complementary DNA sequences, but higher-order structures are also found, with PNA(2n).DNA(n) triplex units, culminating in precipitation at very low ionic strength. In the presence of ammonium acetate, there is a competition between PNA.DNA heteroduplex formation and DNA G-quadruplex formation. Heteroduplex formation is favored when the PNA + DNA mixture in ammonium acetate is heated and cooled at room temperature, but not if the PNA is added at room temperature to the preformed G-quadruplex. We also found that the short [acccca]-PNA strand binds to G-quadruplexes.
Collapse
Affiliation(s)
- Jussara Amato
- Dipartimento di Chimica delle Sostanze Naturali, Facoltà di Scienze Biotecnologiche, Università di Napoli Federico II, Italy
| | | | | | | |
Collapse
|
37
|
Franceschin M. G‐Quadruplex DNA Structures and Organic Chemistry: More Than One Connection. European J Org Chem 2009. [DOI: 10.1002/ejoc.200801196] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Marco Franceschin
- Dipartimento di Chimica, Sapienza – Università di Roma, Piazzale A. Moro 5, 00185 Roma, Italy, Fax: +39‐06‐4991‐3841
| |
Collapse
|
38
|
A solid-state electrochemiluminescence biosensing switch for detection of thrombin based on ferrocene-labeled molecular beacon aptamer. Biosens Bioelectron 2009; 24:3288-92. [PMID: 19442509 DOI: 10.1016/j.bios.2009.04.019] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2009] [Revised: 04/12/2009] [Accepted: 04/14/2009] [Indexed: 11/20/2022]
Abstract
A solid-state electrochemiluminescence (ECL) biosensing switch system based on special ferrocene-labeled molecular beacon aptamer (Fc-MBA) has been developed successfully for thrombin detections. Such special switch system includes two main parts, an ECL substrate and an ECL intensity switch. The ECL substrate was made by modifying the complex of Au nanoparticle and Ruthenium (II) tris-(bipyridine) (Ru(bpy)(3)(2+)-AuNPs) onto Au electrode. A molecular beacon aptamer labeled by ferrocene acted as the ECL intensity switch. The loop bases of the ECL intensity switch are designed with special anti-thrombin aptamer sequence which could be combined with its target protein via the reaction between aptamer and thrombin. During the reactions, the molecular beacon aptamer opened its stem-loop, and the labeled Fc was consequently kept away from the ECL substrate. Such structural change resulted in an obvious ECL intensity increment due to the decreased quenching effect of Fc to the ECL substrate. The analytic results are sensitive and specific.
Collapse
|
39
|
Effects of the introduction of inversion of polarity sites in the quadruplex forming oligonucleotide TGGGT. Bioorg Med Chem 2009; 17:1997-2001. [PMID: 19217303 DOI: 10.1016/j.bmc.2009.01.027] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2008] [Revised: 01/13/2009] [Accepted: 01/14/2009] [Indexed: 11/23/2022]
Abstract
Insight into the influence of inversion of polarity sites on the structural features of quadruplex structures is presented. The NMR and CD studies concern modified oligodeoxynucleotides (ODNs) based on the quadruplex forming sequence TGGGT. The presence of inversion of polarity sites not only does not compromise the formation of quadruplexes, but in some cases it increases the thermal stability of modified complexes compared with that of the unmodified one.
Collapse
|
40
|
Li T, Shi L, Wang E, Dong S. Multifunctional G-quadruplex aptamers and their application to protein detection. Chemistry 2009; 15:1036-42. [PMID: 19053089 DOI: 10.1002/chem.200801282] [Citation(s) in RCA: 131] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Two significant G-quadruplex aptamers named AGRO100 and T30695 are identified as multifunctional aptamers that can bind the protein ligands nucleolin or HIV-1 integrase and hemin. Besides their strong binding to target proteins, both AGRO100 and T30695 exhibit high hemin-binding affinities comparable to that of the known aptamer (termed PS2M) selected by the in vitro evolution process. Most importantly, their corresponding hemin-DNA complexes reveal excellent peroxidase-like activities, higher than that of the reported hemin-PS2M DNAzyme. This enables these multifunctional aptamers to be applied to the sensitive detection of proteins, which is demonstrated by applying AGRO100 to the chemiluminescence detection of nucleolin expressed at the surface of HeLa cells. Based on the specific AGRO100-nucleolin interaction, the surface-expressed nucleolin of HeLa cells is labeled in situ with the hemin-AGRO100 DNAzyme, and then determined in the luminol-H(2)O(2) system. Through this approach, the sensitive detection of total nucleolin expressed at the surface of about 6000 HeLa cells is accomplished. Our results suggest that exploiting new functions of existing aptamers will help to extend their potential applications in the biochemical field.
Collapse
Affiliation(s)
- Tao Li
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China
| | | | | | | |
Collapse
|
41
|
Galeone A, Mayol L, Virgilio A, Virno A, Randazzo A. A further contribution to the extreme variability of quadruplex structures from oligodeoxyribonucleotides containing inversion of polarity sites in the G-tract. MOLECULAR BIOSYSTEMS 2008; 4:426-30. [PMID: 18414740 DOI: 10.1039/b718778e] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Structural insight into DNA quadruplex structures formed by oligodeoxyribonucleotides 3'TG5'-5'GGGT3' (QS55) and 5'TG3'-3'GGGT5' (QS33) is presented. NMR analysis reveals that QS33 forms a parallel-like four-fold symmetric quadruplex, while QS55 possesses a two-fold symmetry and is characterized by a tetrameric antiparallel quadruplex embedded between two parallel tracts. The results reported here describe unprecedented quadruplex complexes provided by peculiar structural features never reported to date. These structures might inspire the design of new aptameric nucleic acids characterized by novel structural motifs hardly realizable with unmodified DNA/RNA.
Collapse
Affiliation(s)
- Aldo Galeone
- Università degli Studi di Napoli Federico II, Dipartimento di Chimica delle Sostanze Naturali, via D. Montesano, 49 - Napoli, Italy
| | | | | | | | | |
Collapse
|
42
|
WANG XY, YUN W, ZHOU JM, DONG P, HE PG, FANG YZ. Ru(bpy)32+-doped Silica Nanoparticle Aptasensor for Detection of Thrombin Based on Electrogenerated Chemiluminescence. CHINESE J CHEM 2008. [DOI: 10.1002/cjoc.200890061] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
43
|
Song EJ, Babar SME, Oh E, Hasan MN, Hong HM, Yoo YS. CE at the omics level: Towards systems biology – An update. Electrophoresis 2008; 29:129-42. [DOI: 10.1002/elps.200700467] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
44
|
Abstract
Aptamers are rare nucleic acid ligands, which can be concocted in the laboratory from the randomized pool of molecules by affinity and amplification processes. Aptamers have several properties as they can be applied complementarily to antibodies and have several advantages over antibodies. In the past, several aptamers have been selected with a view to develop antiviral agents for therapeutic applications. This review summarizes potent antiviral aptamers and their strategies to prevent the viral replication.
Collapse
Affiliation(s)
- S C B Gopinath
- Functional Nucleic Acids Group, Institute for Biological Resources and Functions and Center for Applied Near Field Optics Research, National Institute of Advanced Industrial Science and Technology, Tsukuba, Japan.
| |
Collapse
|
45
|
Wochner A, Menger M, Rimmele M. Characterisation of aptamers for therapeutic studies. Expert Opin Drug Discov 2007; 2:1205-24. [DOI: 10.1517/17460441.2.9.1205] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
46
|
Wang X, Zhou J, Yun W, Xiao S, Chang Z, He P, Fang Y. Detection of thrombin using electrogenerated chemiluminescence based on Ru(bpy)3(2+)-doped silica nanoparticle aptasensor via target protein-induced strand displacement. Anal Chim Acta 2007; 598:242-8. [PMID: 17719898 DOI: 10.1016/j.aca.2007.07.050] [Citation(s) in RCA: 115] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2007] [Revised: 07/09/2007] [Accepted: 07/17/2007] [Indexed: 11/29/2022]
Abstract
A sensitive and selective aptasensor using tri(2,2'-bipyridyl)ruthenium(II)-doped silica nanoparticles (Ru(bpy)3(2+)-doped SNPs) as DNA tags for detection of thrombin is developed based on the target protein-induced strand displacement of the DNA probe. For the proposed aptasensor, the aptamer was assembled on the surface of the Au electrode through Au-S binding. The hybridization event between the DNA probe labeled by the Ru(bpy)3(2+)-doped SNPs and the aptamer was evaluated by electrogenerated chemiluminescence (ECL) measurements. Then, the DNA probe was displaced by thrombin and the binding event between the thrombin and the aptamer was monitored by ECL measurements again. The difference of ECL intensity (deltaI(ECL)) of the two events could be used to quantify the thrombin. Other proteins, such as bovine serum albumin and bovine hemoglobin, had almost negligible deltaI(ECL). Under the optimal conditions, the deltaI(ECL) was linearly related to the concentration of the thrombin in the range of 10 fM to 10 pM and the detection limit was down to 1.0 fM since SNPs containing a large number of Ru(bpy)3(2+) molecules were labeled on the DNA probe.
Collapse
Affiliation(s)
- Xiaoying Wang
- Department of Chemistry, East China Normal University, Shanghai 200062, PR China
| | | | | | | | | | | | | |
Collapse
|
47
|
Protoberberine Alkaloids: Physicochemical and Nucleic Acid Binding Properties. TOPICS IN HETEROCYCLIC CHEMISTRY 2007. [DOI: 10.1007/7081_2007_071] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
48
|
Oliviero G, Amato J, Borbone N, Galeone A, Petraccone L, Varra M, Piccialli G, Mayol L. Synthesis and characterization of monomolecular DNA G-quadruplexes formed by tetra-end-linked oligonucleotides. Bioconjug Chem 2006; 17:889-98. [PMID: 16848394 DOI: 10.1021/bc060009b] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Guanine-rich DNA sequences are widely dispersed in the eukaryotic genome and are abundant in regions with relevant biological significance. They can form quadruplex structures stabilized by guanine quartets. These structures differ for number and strand polarity, loop composition, and conformation. We report here the syntheses and the structural studies of a set of interconnected d(TG(4)T) fragments which are tethered, with different orientations, to a tetra-end-linker in an attempt to force the formation of specific four-stranded DNA quadruplex structures. Two synthetic strategies have been used to obtain oligodeoxyribonucleotide (ODN) strands linked with their 3'- or 5'-ends to each of the four arms of the linker. The first approach allowed the synthesis of tetra-end-linked ODN (TEL-ODN) containing the four ODN strands with a parallel orientation, while the latter synthetic pathway led to the synthesis of TEL-ODNs each containing antiparallel ODN pairs. The influence of the linker at 3'- or 5'-ODN, on the quadruplex typology and stability, in the presence of sodium or potassium ions, has been investigated by circular dichroism (CD), CD thermal denaturation, (1)H NMR experiments at variable temperature, and molecular modeling. All synthesized TEL-ODNs formed parallel G-quadruplex structures. Particularly, the TEL-ODN containing all parallel ODN tracts formed very stable parallel G-quadruplex complexes, whereas the TEL-ODNs containing antiparallel ODN pairs led to relatively less stable parallel G-quadruplexes. The molecular modeling data suggested that the above antiparallel TEL-ODNs can adopt parallel G-quadruplex structures thanks to a considerable folding of the tetra-end-linker around the whole quadruplex scaffold.
Collapse
Affiliation(s)
- Giorgia Oliviero
- Dipartimento di Chimica delle Sostanze Naturali, Università degli Studi di Napoli Federico II, Via D. Montesano 49, I-80131 Napoli, Italy
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Savarino A. A historical sketch of the discovery and development of HIV-1 integrase inhibitors. Expert Opin Investig Drugs 2006; 15:1507-22. [PMID: 17107277 DOI: 10.1517/13543784.15.12.1507] [Citation(s) in RCA: 96] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The long process of HIV-1 integrase inhibitor discovery and development can be attributed to both the complexity of HIV-1 integration and poor 'integration' of these researches into mainstream investigations on antiretroviral therapy in the mid-1990s. Of note, some fungal extracts investigated during this period contain the beta-hydroxyketo group, later recognised to be a key structural requirement for keto-enol acids (also referred to as diketo acids) and other integrase inhibitors. This review reconstructs (in the general context of the history of AIDS research) the principal steps that led to the integrase inhibitors currently in clinical trials, and discusses possible future directions.
Collapse
Affiliation(s)
- Andrea Savarino
- Department of Infectious, Parasitic and Immune-mediated Diseases, Istituto Superiore di Sanità Viale Regina Elena, 299. 00161- Rome, Italy.
| |
Collapse
|
50
|
Petraccone L, Martino L, Duro I, Oliviero G, Borbone N, Piccialli G, Giancola C. Physico-chemical analysis of G-quadruplex containing bunch-oligonucleotides. Int J Biol Macromol 2006; 40:242-7. [PMID: 16979232 DOI: 10.1016/j.ijbiomac.2006.07.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2006] [Revised: 07/28/2006] [Accepted: 07/28/2006] [Indexed: 11/29/2022]
Abstract
A growing number of evidences suggest that DNA G-quadruplex structures play an important role in many relevant biological processes. The introduction of chemical modifications in quadruplex structures could enhance the in vivo biological activity. The correlation between the physico-chemical properties and chemical modifications represents an essential step toward the de novo design of quadruplex forming oligonucleotides for biomedical applications. We report the physico-chemical characterisation of a quadruplex formed by a bunch of four d(TG4T) oligonucleotides whose 3'-ends are linked together by a tetra-branched linker. The study was performed by circular dichroism, gel electrophoresis and molecular modelling techniques. The data indicate an high stability for this kind of quadruplex and add some information on the role of the tetra-branched linker on the quadruplex stability.
Collapse
Affiliation(s)
- Luigi Petraccone
- Dipartimento di Scienze Farmaceutiche, Via Ponte Don Melillo, 84084 Fisciano (SA), Italy
| | | | | | | | | | | | | |
Collapse
|